1
|
Wang R, Li Y, Yin W, Sun H, Xu S, Shuang S, Tian Y, Huang X, Chen G, Che Z. Synthesis, Anti-Oomycete and Anti-Fungal Activities of Anhydride Derivatives of Oleanolic Acid. Chem Biodivers 2024; 21:e202401952. [PMID: 39198232 DOI: 10.1002/cbdv.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Oleanolic acid is a pentacyclic triterpenoid extracted and isolated from the fruit of plants in the Ligustrum lucidum Ait. in the family Oleaceae. To discover biorational natural product-based pesticides, a series of oleanolic acid derivatives containing anhydride active skeletons were prepared by ingeniously introducing an active acyloxy group at its C-28 carboxyl position, and their structures were well characterized by 1H-NMR, 13C NMR, HRMS, and m.p. The stereochemical configuration of compound 8 e was confirmed using single-crystal X-ray diffraction. Furthermore, bioactivities of these compounds as anti-oomycete and anti-fungal agents against two serious agricultural pests, Phytophthora capsici (P. capsici) and Fusarium graminearum (F. graminearum) we assessed. Amongst evaluated compounds, 1) Compounds 8 h and 8 j displayed significant anti-oomycete against P. capsici, with EC50 values of 54.73 and 65.15 mg/L, respectively. 2) The target compounds have obvious selectivity, and their anti-oomycete activity is significantly better than their anti-fungal activity. 3) Interestingly, there are significant differences in the structure-activity relationship of different substituents or the same substituent at different positions anti-oomycete and anti-fungal against P. capsici and F. graminearum, respectively. The study provides an idea for further exploring the bioactivities of 28-acyloxyoleanolic acid derivatives, and develops the application of 28-acyloxyoleanolic acid derivatives containing anhydride in agriculture.
Collapse
Affiliation(s)
- Ruiguang Wang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yuanhao Li
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wanying Yin
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Huilu Sun
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shaobin Xu
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shaoyan Shuang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yuee Tian
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhiping Che
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
2
|
Findik BT, Yildiz H, Akdeniz M, Yener I, Yilmaz MA, Cakir O, Ertas A. Phytochemical profile, enzyme inhibition, antioxidant, and antibacterial activity of Rosa pimpinellifolia L.: A comprehensive study to investigate the bioactivity of different parts (whole fruit, pulp, and seed part) of the fruit. Food Chem 2024; 455:139921. [PMID: 38843718 DOI: 10.1016/j.foodchem.2024.139921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
The pharmaceutical and nutraceutical potentials of whole fruit, pulp and seeds of Rosa pimpinellifolia L. were evaluated. Forty-two phenolic compounds and two triterpenoids were identified in extracts by LC-MS/MS and GC-MS, respectively. The most prominent compounds were ellagic acid, catechin, epicatechin, tannic acid, quercetin, oleanolic acid, and ursolic acid. The highest enzyme inhibitory activities of the extracts (94.83%) were obtained against angiotensin-converting enzyme and were almost equal to those of the commercial standard (lisinopril, 98.99%). Whole fruit and pulp extracts (IC50:2.47 and 1.52 μg DW/mL) exhibited higher antioxidant capacity than the standards (α-tocopherol, IC50:9.89 μg DW/mL). The highest antibacterial activity was obtained against Bacillus cereus (MIC: 256 μg/mL) for the whole fruit extract. Correlation analyses were conducted to find the correlation between individual phenolics and enzyme inhibitory activities. The results showed the remarkable future of not only the edible part but also the seeds of black rose hips in phytochemical and functional aspects.
Collapse
Affiliation(s)
- Bahar Tuba Findik
- Nevsehir Hacı Bektas Veli University, Faculty of Arts and Sciences, Department of Chemistry, 50300 Nevsehir, Turkiye.
| | - Hilal Yildiz
- Nevsehir Hacı Bektas Veli University, Faculty of Engineering and Architecture, Department of Food Engineering, 50300 Nevsehir, Turkiye.
| | - Mehmet Akdeniz
- The Council of Forensic Medicine, Diyarbakir Group Chairmanship, 21280 Diyarbakir, Turkiye
| | - Ismail Yener
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye.
| | - Mustafa Abdullah Yilmaz
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| | - Ozlem Cakir
- Bayburt University, Faculty of Engineering, Department of Food Engineering, 69000 Bayburt, Turkiye.
| | - Abdulselam Ertas
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| |
Collapse
|
3
|
Belén Valdez M, D Jonsiles MF, Avigliano E, Palermo JA. Unlocking the Potential of Glutinol: Structural Diversification and Antifungal Activity against Phytopathogenic Fusarium Strains. JOURNAL OF NATURAL PRODUCTS 2024; 87:2055-2067. [PMID: 39101318 DOI: 10.1021/acs.jnatprod.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Unlike most common pentacyclic plant triterpenes, glutinol has a methyl group at position C-9 and a Δ5 double bond. At the same time, it lacks a methyl at C-10. These features significantly modify its chemical behavior compared to other triterpenes, particularly under oxidative conditions. Although the isolation of glutinol from various plant species has been documented, its chemistry remains largely unexplored. In this study, glutinol was isolated from the bark of Balfourodendron riedelianum as a starting material for top-down strategies of structural diversification, which included ring fusion, oxidation, aromatization, and ring cleavage reactions. Glutinol, together with a library of 22 derivatives, was evaluated for antifungal activity against three phytopathogenic Fusarium strains, F. solani, F. graminearum, and F. tucumaniae. Some of the derivatives displayed antifungal activity; in particular, compound 12, featuring a triazine ring, displayed the best fungicidal properties against F. solani and F. graminearum, while the ring B cleavage product 23 showed the best activity against F. tucumaniae. This study highlights the potential of glutinol as a scaffold for structural diversification, and these results may contribute to the design of novel fungicidal agents against phytopathogenic strains.
Collapse
Affiliation(s)
- María Belén Valdez
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Buenos Aires, C1428EGA, Argentina
| | - María Fernanda D Jonsiles
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Buenos Aires, C1428EGA, Argentina
| | - Esteban Avigliano
- Centro de Investigaciones Antonia Ramos (CIAR). Fundación Bosques Nativos Argentinos. Camino Balneario s/n, Villa Bonita, Misiones, B1640, Argentina
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-UB, Av. Chorroarín 280, CABA, C1427CWO, Argentina
| | - Jorge A Palermo
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
4
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
5
|
Zhang W, Iqbal J, Hou Z, Fan Y, Dong J, Liu C, Yang T, Che D, Zhang J, Xin D. Genome-Wide Identification of the CYP716 Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and Its Role in the Regulation of Triterpenoid Saponin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1946. [PMID: 39065473 PMCID: PMC11281222 DOI: 10.3390/plants13141946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
The main type of saponins occurring in the root of Platycodon grandiflorus (Jacq.) A. DC. are oleanolic acid glycosides. The CYP716 gene family plays a major role in catalyzing the conversion of β-amyrin into oleanolic acid. However, studies on the CYP716 genes in P. grandiflorus are limited, and its evolutionary history remains poorly understood. In this study, 22 PgCYP716 genes were identified, distributed among seven subfamilies. Cis-acting elements of the PgCYP716 promoters were mainly involved in plant hormone regulation and responses to abiotic stresses. PgCYP716A264, PgCYP716A391, PgCYP716A291, and PgCYP716BWv3 genes were upregulated in the root and during saponin accumulation, as shown by RNA-seq analysis, suggesting that these four genes play an important role in saponin synthesis. The results of subcellular localization indicated that these four genes encoded membrane proteins. Furthermore, the catalytic activity of these four genes was proved in the yeast, which catalyzed the conversion of β-amyrin into oleanolic acid. We found that the content of β-amyrin, platycodin D, platycoside E, platycodin D3, and total saponins increased significantly when either of the four genes was over expressed in the transgenic hair root. In addition, the expression of PgSS, PgGPPS2, PgHMGS, and PgSE was also upregulated while these four genes were overexpressed. These data support that these four PgCYP716 enzymes oxidize β-amyrin to produce oleanolic acid, ultimately promoting saponin accumulation by activating the expression of upstream pathway genes. Our results enhanced the understanding of the functional variation among the PgCYP716 gene family involved in triterpenoid biosynthesis and provided a theoretical foundation for improving saponin content and enriching the saponin biosynthetic pathway in P. grandiflorus.
Collapse
Affiliation(s)
- Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Javed Iqbal
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Zhihui Hou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Yingdong Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Chengzhi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Dawei Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Teng W, Zhou Z, Cao J, Guo Q. Recent Advances of Natural Pentacyclic Triterpenoids as Bioactive Delivery System for Synergetic Biological Applications. Foods 2024; 13:2226. [PMID: 39063310 PMCID: PMC11275325 DOI: 10.3390/foods13142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Bioactive compounds have drawn much attention according to their various health benefits. However, poor dissolvability, low stability and limited bioavailability largely narrow their applications. Although a variety of nontoxic ingredients have been rapidly developed as vehicles to deliver bioactive compounds in the last few years, most of them are non-bioactive. Pentacyclic triterpenoids, owing to their unique self-assembly and co-assembly behaviors and different physiological functions, can construct bioactive carriers due to their higher biodegradability, biocompatibility and lower toxicity. In this paper, the basic classification, biological activities and physicochemical properties of pentacyclic triterpenoids were summarized. Additionally, applications of self-assembled and co-assembled pentacyclic triterpenoids as bioactive delivery systems to load bioactive components and future research directions were discussed. This study emphasizes the potential of pentacyclic triterpenoids as bioactive delivery systems, offering a new perspective for constructing self- or co-assemblies for further synergetic biological applications.
Collapse
Affiliation(s)
- Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Zixiao Zhou
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Wu YF, Zhao ZY, Yang MJ, He YH, Zang Y, Li J, Hu JF, Xiong J. Pentacyclic triterpenoids as potential ACL inhibitors from the rare medicinal plant Semiliquidambar cathayensis. Fitoterapia 2024; 176:106018. [PMID: 38744385 DOI: 10.1016/j.fitote.2024.106018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
An extensive phytochemical investigation on the rare medicinal plant Semiliquidambar cathayensis (family: Hamamelidaceae) led to the isolation of four new (1-4, named semiliquidacids A-D, respectively) and 25 related known pentacyclic triterpenoids. The new structures with absolute configurations were elucidated by spectroscopic methods, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Compound 1 represents the first naturally occurring ursane-type triterpenoid featuring an uncommon C-25 formyl group. Compound 4 and oleanolic acid (13) exhibited remarkable inhibitory effects against the ATP-citrate lyase (ACL, an emerging drug target for hyperlipidemia and related metabolic disorders) with IC50 values of 6.5 and 11.9 μM, respectively. The molecular interaction and binding mode between the bioactive triterpenoids and ACL were elaborated by conducting a molecular docking study. Meanwhile, the chemotaxonomic significance of the isolated triterpenoids has been briefly discussed.
Collapse
Affiliation(s)
- Yu-Fei Wu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ze-Yu Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China; Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China
| | - Min-Jie Yang
- Department of Emergency Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yu-Hang He
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, PR China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China.
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
8
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
9
|
Liu T, Wang J, Tong Y, Wu L, Xie Y, He P, Lin S, Hu X. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity. J Transl Med 2024; 22:86. [PMID: 38246999 PMCID: PMC10802007 DOI: 10.1186/s12967-023-04840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Obesity, a condition associated with the development of widespread cardiovascular disease, metabolic disorders, and other health complications, has emerged as a significant global health issue. Oleanolic acid (OA), a pentacyclic triterpenoid compound that is widely distributed in various natural plants, has demonstrated potential anti-inflammatory and anti-atherosclerotic properties. However, the mechanism by which OA fights obesity has not been well studied. METHOD Network pharmacology was utilized to search for potential targets and pathways of OA against obesity. Molecular docking and molecular dynamics simulations were utilized to validate the interaction of OA with core targets, and an animal model of obesity induced by high-fat eating was then employed to confirm the most central of these targets. RESULTS The network pharmacology study thoroughly examined 42 important OA targets for the treatment of obesity. The key biological processes (BP), cellular components (CC), and molecular functions (MF) of OA for anti-obesity were identified using GO enrichment analysis, including intracellular receptor signaling, intracellular steroid hormone receptor signaling, chromatin, nucleoplasm, receptor complex, endoplasmic reticulum membrane, and RNA polymerase II transcription Factor Activity. The KEGG/DAVID database enrichment study found that metabolic pathways, PPAR signaling pathways, cancer pathways/PPAR signaling pathways, insulin resistance, and ovarian steroidogenesis all play essential roles in the treatment of obesity and OA. The protein-protein interaction (PPI) network was used to screen nine main targets: PPARG, PPARA, MAPK3, NR3C1, PTGS2, CYP19A1, CNR1, HSD11B1, and AGTR1. Using molecular docking technology, the possible binding mechanism and degree of binding between OA and each important target were validated, demonstrating that OA has a good binding potential with each target. The molecular dynamics simulation's Root Mean Square Deviation (RMSD), and Radius of Gyration (Rg) further demonstrated that OA has strong binding stability with each target. Additional animal studies confirmed the significance of the core target PPARG and the core pathway PPAR signaling pathway in OA anti-obesity. CONCLUSION Overall, our study utilized a multifaceted approach to investigate the value and mechanisms of OA in treating obesity, thereby providing a novel foundation for the identification and development of natural drug treatments.
Collapse
Affiliation(s)
- Tianfeng Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Jiliang Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ying Tong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Lele Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ying Xie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ping He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Shujue Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Xuguang Hu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Luo G, Aldridge K, Chen T, Aslot V, Kim BG, Han EH, Singh N, Li S, Xiao TS, Sporn MB, Letterio JJ. The synthetic oleanane triterpenoid CDDO-2P-Im binds GRP78/BiP to induce unfolded protein response-mediated apoptosis in myeloma. Mol Oncol 2023; 17:2526-2545. [PMID: 37149844 DOI: 10.1002/1878-0261.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023] Open
Abstract
Synthetic oleanane triterpenoids (SOTs) are small molecules with broad anticancer properties. A recently developed SOT, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-2-yl)-1H-imidazole (CDDO-2P-Im or '2P-Im'), exhibits enhanced activity and improved pharmacokinetics over CDDO-Im, a previous generation SOT. However, the mechanisms leading to these properties are not defined. Here, we show the synergy of 2P-Im and the proteasome inhibitor ixazomib in human multiple myeloma (MM) cells and 2P-Im activity in a murine model of plasmacytoma. RNA sequencing and quantitative reverse transcription PCR revealed the upregulation of the unfolded protein response (UPR) in MM cells upon 2P-lm treatment, implicating the activation of the UPR as a key step in 2P-Im-induced apoptosis. Supporting this hypothesis, the deletion of genes encoding either protein kinase R-like endoplasmic reticulum kinase (PERK) or DNA damage-inducible transcript 3 protein (DDIT3; also known as CHOP) impaired the MM response to 2P-Im, as did treatment with ISRIB, integrated stress response inhibitor, which inhibits UPR signaling downstream of PERK. Finally, both drug affinity responsive target stability and thermal shift assays demonstrated direct binding of 2P-Im to endoplasmic reticulum chaperone BiP (GRP78/BiP), a stress-inducible key signaling molecule of the UPR. These data reveal GRP78/BiP as a novel target of SOTs, and specifically of 2P-Im, and suggest the potential broader utility of this class of small molecules as modulators of the UPR.
Collapse
Affiliation(s)
- George Luo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Toby Chen
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Vivek Aslot
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Byung-Gyu Kim
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Eun Hyang Han
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Neelima Singh
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Sai Li
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - John J Letterio
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Sowa-Kasprzak K, Totoń E, Kujawski J, Olender D, Lisiak N, Zaprutko L, Rubiś B, Kaczmarek M, Pawełczyk A. Synthesis, Cytotoxicity and Molecular Docking of New Hybrid Compounds by Combination of Curcumin with Oleanolic Acid. Biomedicines 2023; 11:1506. [PMID: 37371601 DOI: 10.3390/biomedicines11061506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Curcumin and oleanolic acid are natural compounds with high potential in medicinal chemistry. These products have been widely studied for their pharmacological properties and have been structurally modified to improve their bioavailability and therapeutic value. In the present study, we discuss how these compounds are utilized to develop bioactive hybrid compounds that are intended to target cancer cells. Using a bifunctional linker, succinic acid, to combine curcumin and triterpenoic oleanolic acid, several hybrid compounds were prepared. Their cytotoxicity against different cancer cell lines was evaluated and compared with the activity of curcumin (the IC50 value (24 h), for MCF7, HeLaWT and HT-29 cancer cells for KS5, KS6 and KS8 compounds was in the range of 20.6-94.4 µM, in comparison to curcumin 15.6-57.2 µM). Additionally, in silico studies were also performed. The computations determined the activity of the tested compounds towards proteins selected due to their similar binding modes and the nature of hydrogen bonds formed within the cavity of ligand-protein complexes. Overall, the curcumin-triterpene hybrids represent an important class of compounds for the development of effective anticancer agents also without the diketone moiety in the curcumin molecule. Moreover, some structural modifications in keto-enol moiety have led to obtaining more information about different chemical and biological activities. Results obtained may be of interest for further research into combinations of curcumin and oleanolic acid derivatives.
Collapse
Affiliation(s)
- Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Jacek Kujawski
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Dorota Olender
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Gene Therapy Unit, Greater Poland Cancer Centre, Garbary 15 Str., 61-866 Poznań, Poland
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| |
Collapse
|
12
|
Fu S, Yang X. Recent advances in natural small molecules as drug delivery systems. J Mater Chem B 2023; 11:4584-4599. [PMID: 37084077 DOI: 10.1039/d3tb00070b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Drug delivery systems (DDSs) are a multidisciplinary approach toward the effective delivery of drugs to their target sites. Natural small molecule (NSM) compounds with anticancer activity, self-assembly and co-assembly functions show great potential for application as novel DDSs in the biomedical field. NSMs are widely sourced, have many modification sites, and readily form hydrogen bonds, π-π interactions, van der Waals interactions, and other non-covalent bonds in solvents, resulting in ordered structures. Moreover, their good biocompatibility and bioactivity allow compositions based on these compounds to be used in life science applications such as tissue engineering, drug delivery and cell imaging, showing the potential medical value of NSMs as DDSs. In this review, we summarise the role, assembly principles and applications of natural products such as triterpenoids, diterpenoids, sterols, alkaloids and polysaccharides in the construction of small molecule systems, which are expected to provide an important reference for the development of more active natural nanomaterials and the study of single or multi-component interactions.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, No. 188 Jihuayuan South Road, Yubei District, Chongqing, 401135, China
| |
Collapse
|
13
|
Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review. Pharmaceuticals (Basel) 2023; 16:ph16030386. [PMID: 36986485 PMCID: PMC10055990 DOI: 10.3390/ph16030386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Saponins represent important natural derivatives of plant triterpenoids that are secondary plant metabolites. Saponins, also named glycoconjugates, are available both as natural and synthetic products. This review is focused on saponins of the oleanane, ursane, and lupane types of triterpenoids that include several plant triterpenoids displaying various important pharmacological effects. Additional convenient structural modifications of naturally-occurring plant products often result in enhancing the pharmacological effects of the parent natural structures. This is an important objective for all semisynthetic modifications of the reviewed plant products, and it is included in this review paper as well. The period covered by this review (2019–2022) is relatively short, mainly due to the existence of previously published review papers in recent years.
Collapse
|