1
|
Li T, Gao S, Wei Y, Wu G, Feng Y, Wang Y, Jiang X, Kuang H, Han W. Combined untargeted metabolomics and network pharmacology approaches to reveal the therapeutic role of withanolide B in psoriasis. J Pharm Biomed Anal 2024; 245:116163. [PMID: 38657365 DOI: 10.1016/j.jpba.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Psoriasis is a refractory inflammatory skin disorder in which keratinocyte hyperproliferation is a crucial pathogenic factor. Up to now, it is commonly acknowledged that psoriasis has a tight connection with metabolic disorders. Withanolides from Datura metel L. (DML) have been proved to possess anti-inflammatory and anti-proliferative properties in multiple diseases including psoriasis. Withanolide B (WB) is one of the abundant molecular components in DML. However, existing experimental studies regarding the potential effects and mechanisms of WB on psoriasis still remain lacking. Present study aimed to integrate network pharmacology and untargeted metabolomics strategies to investigate the therapeutic effects and mechanisms of WB on metabolic disorders in psoriasis. In our study, we observed that WB might effectively improve the symptoms of psoriasis and alleviate the epidermal hyperplasia in imiquimod (IMQ)-induced psoriasis-like mice. Both network pharmacology and untargeted metabolomics results suggested that arachidonic acid metabolism and arginine and proline metabolism pathways were linked to the treatment of psoriasis with WB. Meanwhile, we also found that WB may affect the expression of regulated enzymes 5-lipoxygenase (5-LOX), 12-LOX, ornithine decarboxylase 1 (ODC1) and arginase 1 (ARG1) in the arachidonic acid metabolism and arginine and proline metabolism pathways. In summary, this paper showed the potential metabolic mechanisms of WB against psoriasis and suggested that WB would have greater potential in psoriasis treatment.
Collapse
Affiliation(s)
- Tingting Li
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China; Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Si Gao
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Yundong Wei
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Gang Wu
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Yiping Feng
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Yanyan Wang
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Xudong Jiang
- School of Medicine, Guangxi University of Science and Technology, No.257 Liu-shi Road, Yufeng District, Liuzhou 545005, China.
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin 150040, China.
| | - Wei Han
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No.4 Dong-qing Road, Huaxi District, Guiyang 550025, China; Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Traditional Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin 150040, China.
| |
Collapse
|
2
|
Pan L, Xu Z, Wen M, Li M, Lyu D, Xiao H, Li Z, Xiao J, Cheng Y, Huang H. Xinbao Pill ameliorates heart failure via regulating the SGLT1/AMPK/PPARα axis to improve myocardial fatty acid energy metabolism. Chin Med 2024; 19:82. [PMID: 38862959 PMCID: PMC11165817 DOI: 10.1186/s13020-024-00959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Heart failure (HF) is characterized by a disorder of cardiomyocyte energy metabolism. Xinbao Pill (XBW), a traditional Chinese medicine formulation integrating "Liushen Pill" and "Shenfu Decoction," has been approved by China Food and Drug Administration for the treatment of HF for many years. The present study reveals a novel mechanism of XBW in HF through modulation of cardiac energy metabolism. METHODS In vivo, XBW (60, 90, 120 mg/kg/d) and fenofibrate (100 mg/kg/d) were treated for six weeks in Sprague-Dawley rats that were stimulated by isoproterenol to induce HF. Cardiac function parameters were measured by echocardiography, and cardiac pathological changes were assessed using H&E, Masson, and WGA staining. In vitro, primary cultured neonatal rat cardiomyocytes (NRCMs) were induced by isoproterenol to investigate the effects of XBW on myocardial cell damage, mitochondrial function and fatty acid energy metabolism. The involvement of the SGLT1/AMPK/PPARα signalling axis was investigated. RESULTS In both in vitro and in vivo models of ISO-induced HF, XBW significantly ameliorated cardiac hypertrophy cardiac fibrosis, and improved cardiac function. Significantly, XBW improved cardiac fatty acid metabolism and mitigated mitochondrial damage. Mechanistically, XBW effectively suppressed the expression of SGLT1 protein while upregulating the phosphorylation level of AMPK, ultimately facilitating the nuclear translocation of PPARα and enhancing its transcriptional activity. Knockdown of SGLT1 further enhanced cardiac energy metabolism by XBW, while overexpression of SGLT1 reversed the cardio-protective effect of XBW, highlighting that SGLT1 is probably a critical target of XBW in the regulation of cardiac fatty acid metabolism. CONCLUSIONS XBW improves cardiac fatty acid energy metabolism to alleviate HF via SGLT1/AMPK/PPARα signalling axis.
Collapse
Affiliation(s)
- Linjie Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhanchi Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Minghui Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongxin Lyu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiming Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuoming Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junhui Xiao
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Guangzhou, 510801, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Guangzhou, 510801, China.
| |
Collapse
|
3
|
Rasool F, Nizamani ZA, Ahmad KS, Parveen F, Khan SA, Sabir N. An appraisal of traditional knowledge of plant poisoning of livestock and its validation through acute toxicity assay in rats. Front Pharmacol 2024; 15:1328133. [PMID: 38420196 PMCID: PMC10900104 DOI: 10.3389/fphar.2024.1328133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background: Kashmir Himalaya hosts the most diverse and rich flora in the world, which serves as grazing land for millions of small ruminants in the area. While most plant species are beneficial, some can be poisonous, causing economic losses and animal health issues for livestock. Consequently, this study is the first comprehensive report on the traditional phyto-toxicological knowledge in District Muzaffarabad and the assessment of its authenticity through experimental studies in rats. Methods: The data regarding traditional knowledge was gathered from 70 key respondents through semi-structured interviews, which was quantitatively analyzed and authenticated through plant extract testing on Wistar female rats and comparison with published resources. Results: A total of 46 poisonous plant species belonging to 23 families and 38 genera were reported to be poisonous in the study area. Results revealed that leaves were the most toxic plant parts (24 species, 52.1%), followed by the whole plant (18 species, 39.1%), stem (17 species, 36.9%), and seeds (10 species, 21.7%). At the organ level, liver as most susceptible affected by 13 species (28.2%), followed by the gastrointestinal tract (15 species, 32.6%), nervous system (13 species, 8.2%), dermis (8 species, 17.3%), renal (7 species, 15.2%), respiratory (4 species, 8.7%), cardiovascular system (3 species, 6.5%), and reproductive system (2 species, 4.3%). The poisonous plant species with high Relative frequency citation (RFC) and fidelity level (FL) were Nerium oleander (RFC, 0.6; FL, 100), Lantana camara (RFC, 0.6; FL, 100), and Ricinus communis (RFC, 0.6; FL, 100). Experimental assessment of acute toxicity assay in rats revealed that Nerium oleander was the most toxic plant with LD50 of (4,000 mg/kg), trailed by Ricinus communis (4,200 mg/kg), L. camara (4,500 mg/kg), and Datura stramonium (4,700 mg/kg); however, other plants showed moderate to mild toxicity. The major clinical observations were anorexia, piloerection, dyspnea, salivation, tachypnea, constipation, diarrhea, tremor, itchiness, and dullness. Conclusion: This study showed that numerous poisonous plants pose a significant risk to the livestock industry within Himalayan territory, leading to substantial economic losses. Consequently, it is of utmost importance to conduct further comprehensive studies on the phytotoxicity of plants.
Collapse
Affiliation(s)
- Faisal Rasool
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Zaheer Ahmed Nizamani
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | | | - Fahmida Parveen
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Shahzad Akbar Khan
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Naveed Sabir
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| |
Collapse
|
4
|
González U, Nieto-Camacho A, Hernández-Ortega S, Martínez M, Maldonado E. Withanolides from Datura ceratocaula and Datura discolor and their acetylcholinesterase inhibitory activity. Fitoterapia 2023; 170:105655. [PMID: 37595646 DOI: 10.1016/j.fitote.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The investigation of the chemical constituents of Datura ceratocaula and D. discolor allowed to isolate three new withanolides, datucerolide A (1) from the first species, and datudiscolides A (8) and B (9) from the second. In addition, seven known withanolides and five ubiquitous compounds were isolated from these plants, along with 27-O-β-d-glucopyranosyl dinnoxolide A (5), which was obtained as the tetraacetyl derivative 4. All the structures were elucidated by analyses of their spectroscopic and spectrometric data and that of dinnoxolide A (6) was confirmed by X-ray diffraction analysis. The structure 4 was assigned earlier to daturametelin G-Ac and that of 5 to datinolide B, therefore, it will be discussed whether these assignments are correct. On the other hand, the structure of datudiscolide A (8) was previously assigned to the aglycone of dinoxin B (14), however, a revision of its reported NMR data showed inconsistencies with the proposed structure. The inhibitory activity of withanolides 2, 3, 6-8, 12, and 13 against acetylcholinesterase enzyme (AChE) was evaluated. Compounds 6, 7, 12, and 13 exhibited the best activity with IC50 values ranging from 2.8 to 21.5 μM.
Collapse
Affiliation(s)
- Ulises González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico.
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico.
| | - Simón Hernández-Ortega
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico.
| | - Mahinda Martínez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, Col. Juriquilla 76230, Querétaro, Qro, Mexico.
| | - Emma Maldonado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico.
| |
Collapse
|