1
|
Affiliation(s)
- Charlotte S. Teschers
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
2
|
Mende M, Bordoni V, Tsouka A, Loeffler FF, Delbianco M, Seeberger PH. Multivalent glycan arrays. Faraday Discuss 2020; 219:9-32. [PMID: 31298252 DOI: 10.1039/c9fd00080a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycan microarrays have become a powerful technology to study biological processes, such as cell-cell interaction, inflammation, and infections. Yet, several challenges, especially in multivalent display, remain. In this introductory lecture we discuss the state-of-the-art glycan microarray technology, with emphasis on novel approaches to access collections of pure glycans and their immobilization on surfaces. Future directions to mimic the natural glycan presentation on an array format, as well as in situ generation of combinatorial glycan collections, are discussed.
Collapse
Affiliation(s)
- Marco Mende
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Mattes DS, Jung N, Weber LK, Bräse S, Breitling F. Miniaturized and Automated Synthesis of Biomolecules-Overview and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806656. [PMID: 31033052 DOI: 10.1002/adma.201806656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
Collapse
Affiliation(s)
- Daniela S Mattes
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Le Mai Hoang K, Pardo-Vargas A, Zhu Y, Yu Y, Loria M, Delbianco M, Seeberger PH. Traceless Photolabile Linker Expedites the Chemical Synthesis of Complex Oligosaccharides by Automated Glycan Assembly. J Am Chem Soc 2019; 141:9079-9086. [PMID: 31091089 PMCID: PMC6750752 DOI: 10.1021/jacs.9b03769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Automated glycan
assembly (AGA) aims at accelerating access to
synthetic oligosaccharides to meet the demand for defined glycans
as tools for molecular glycobiology. The linkers used to connect the
growing glycan chain to the solid support play a pivotal role in the
synthesis strategy as they determine all chemical conditions used
during the synthesis and the form of the glycan obtained at the end
of it. Here, we describe a traceless photolabile linker used to prepare
carbohydrates with a free reducing end. Modification of the o-nitrobenzyl scaffold of the linker is key to high yields
and compatibility with the AGA workflow. The assembly of an asymmetrical
biantennary N-glycan from oligosaccharide fragments
prepared by AGA and linear as well as branched β-oligoglucans
is described to illustrate the power of the method. These substrates
will serve as standards and biomarkers to examine the unique specificity
of glycosyl hydrolases.
Collapse
Affiliation(s)
- Kim Le Mai Hoang
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Alonso Pardo-Vargas
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Yang Yu
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Mirco Loria
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Martina Delbianco
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
5
|
Lectins and ELLSA as powerful tools for glycoconjugate recognition analyses. Glycoconj J 2019; 36:175-183. [PMID: 30993518 DOI: 10.1007/s10719-019-09865-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Lectins, in combination with our established enzyme-linked lectin sorbent assay (ELLSA) and inhibition study, have been used as powerful tools in many glycoconjugate recognition studies. In this short review, we highlight the following: (i) The recognition profiles of Gal/GalNAc-specific lectins were updated and upgraded. (ii) Based on the cross-specificities of applied lectins, a new classification system was introduced. (iii) Applications of lectins for the detection and identification of N-glycan and/or Tn glycotope in glycoconjugates were intergraded. (iv) The polyvalency of the glycotopes in glycans was found to play a critical role in glycan-lectin recognition. This is an unexplored area of glycobiology and one of the most promising directions toward the coming glycoscience transformation.
Collapse
|
6
|
Pardo-Vargas A, Delbianco M, Seeberger PH. Automated glycan assembly as an enabling technology. Curr Opin Chem Biol 2018; 46:48-55. [DOI: 10.1016/j.cbpa.2018.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
|