1
|
Baranowsky A, Appelt J, Kleber C, Lange T, Ludewig P, Jahn D, Pandey P, Keller D, Rose T, Schetler D, Braumüller S, Huber-Lang M, Tsitsilonis S, Yorgan T, Frosch KH, Amling M, Schinke T, Keller J. Procalcitonin Exerts a Mediator Role in Septic Shock Through the Calcitonin Gene-Related Peptide Receptor. Crit Care Med 2021; 49:e41-e52. [PMID: 33196529 DOI: 10.1097/ccm.0000000000004731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Clinically, procalcitonin represents the most widely used biomarker of sepsis worldwide with unclear pathophysiologic significance to date. Pharmacologically, procalcitonin was shown to signal through both calcitonin receptor and calcitonin gene-related peptide receptor in vitro, yet the identity of its biologically relevant receptor remains unknown. DESIGN Prospective randomized animal investigations and in vitro human blood studies. SETTING Research laboratory of a university hospital. SUBJECTS C57BL/6J mice and patients with post-traumatic sepsis. INTERVENTIONS Procalcitonin-deficient mice were used to decipher a potential mediator role in experimental septic shock and identify the relevant receptor for procalcitonin. Cecal ligation and puncture and endotoxemia models were employed to investigate septic shock. Disease progression was evaluated through survival analysis, histology, proteome profiling, gene expression, and flow cytometry. Mechanistic studies were performed with cultured macrophages, dendritic cells, and gamma delta T cells. Main findings were confirmed in serum samples of patients with post-traumatic sepsis. MEASUREMENTS AND MAIN RESULTS Procalcitonin-deficient mice are protected from septic shock and show decreased pulmonary inflammation. Mechanistically, procalcitonin potentiates proinflammatory cytokine expression in innate immune cells, required for interleukin-17A expression in gamma delta T cells. In patients with post-traumatic sepsis, procalcitonin positively correlates with systemic interleukin-17A levels. In mice with endotoxemia, immunoneutralization of interleukin-17A inhibits the deleterious effect of procalcitonin on disease outcome. Although calcitonin receptor expression is irrelevant for disease progression, the nonpeptide calcitonin gene-related peptide receptor antagonist olcegepant, a prototype of currently introduced antimigraine drugs, inhibits procalcitonin signaling and increases survival time in septic shock. CONCLUSIONS Our experimental data suggest that procalcitonin exerts a moderate but harmful effect on disease progression in experimental septic shock. In addition, the study points towards the calcitonin gene-related peptide receptor as relevant for procalcitonin signaling and suggests a potential therapeutic application for calcitonin gene-related peptide receptor inhibitors in sepsis, which warrants further clinical investigation.
Collapse
Affiliation(s)
- Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Appelt
- Julius Wolff Institut for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Kleber
- University Center of Orthopaedics and Traumatology, University Hospital Dresden, Dresden, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, Hamburg, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Jahn
- Julius Wolff Institut for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Puja Pandey
- Julius Wolff Institut for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Rose
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Schetler
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, Hamburg, Germany
| | - Sonja Braumüller
- Department of Traumatology, Center of Surgery, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Department of Traumatology, Center of Surgery, University of Ulm, Ulm, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institut for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Yuan Y, Jiang Y, Wang B, Guo Y, Gong P, Xiang L. Deficiency of Calcitonin Gene-Related Peptide Affects Macrophage Polarization in Osseointegration. Front Physiol 2020; 11:733. [PMID: 32848807 PMCID: PMC7412000 DOI: 10.3389/fphys.2020.00733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
Macrophages have been described as a critical cell population regulating bone regeneration and osseointegration, and their polarization phenotype is of particular importance. Several studies have shown that calcitonin gene-related peptide-α (CGRP) might modulate macrophage polarization in inflammatory response and bone metabolism. This study aimed to investigate the effect of CGRP on macrophage polarization in titanium osseointegration. In vitro, bone marrow-derived macrophages (BMDMs) from C57BL/6 or CGRP–/– mice were obtained and activated for M1 and M2 polarization. Flow cytometry and real-time PCR were used to evaluate the M1/M2 polarization and inflammatory function. In vivo, mice were divided into 3 groups: wild-type, CGRP–/–, and CGRP–/– mice with CGRP lentivirus. After extraction of the maxillary first molar, 0.6 mm × 1.25 mm titanium implants were emplaced. Bone formation and inflammation levels around implants were then observed and analyzed. The results of flow cytometry demonstrated that CGRP deficiency promoted M1 polarization and inhibited M2 polarization in BMDMs, which was consistent with pro-inflammatory and anti-inflammatory cytokine expression levels in real-time PCR. In vivo, compared with the CGRP–/– group, the CGRP gene transfection group displayed better osseointegration and lower inflammation levels, close to those of the wild-type group. These results revealed that CGRP might play roles in macrophage polarization. In addition, CGRP deficiency could inhibit osseointegration in murine maxillae, while CGRP recovery by lentivirus transfection could improve osseointegration and regulate macrophage phenotype expression.
Collapse
Affiliation(s)
- Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Pomes LM, Guglielmetti M, Bertamino E, Simmaco M, Borro M, Martelletti P. Optimising migraine treatment: from drug-drug interactions to personalized medicine. J Headache Pain 2019; 20:56. [PMID: 31101004 PMCID: PMC6734220 DOI: 10.1186/s10194-019-1010-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/05/2019] [Indexed: 11/16/2022] Open
Abstract
Migraine is the most disabling and expensive chronic disorders, the etiology of which is still not fully known. The neuronal systems, (glutammatergic, dopaminergic, serotoninergic and GABA-ergic) whose functionality is partly attributable to genetically determined factors, has been suggested to play an important role. The treatment of acute attacks and the prophylactic management of chronic forms include the use of different category of drugs, and it is demonstrated that not each subject has the same clinical answer to them. The reason of this is to be searched in different functional capacity and quantity of phase I enzymes (such as different isoforms of CYP P450), phase II enzymes (such as UDP-glucuronosyltransferases), receptors (such as OPRM1 for opioids) and transporters (such as ABCB1) involved in the metabolic destiny of each drug, all of these dictated by DNA and RNA variations. The general picture is further exacerbated by the need for polytherapies, often also to treat comorbidities, which may interfere with the pharmacological action of anti-migraine drugs. Personalized medicine has the objective of setting the optimal therapies in the light of the functional biochemical asset and of the comorbidities of the individual patient, in order to obtain the best clinical response. Novel therapeutic perspectives in migraine includes biotechnological drugs directed against molecules (such as CGRP and its receptor) that cause vasodilatation at the peripheral level of the meningeal blood vessels and reflex stimulation of the parasympathetic system. Drug-drug interactions and the possible competitive metabolic destiny should be studied by the application of pharmacogenomics in large scale. Drug-drug interactions and their possible competitive metabolic destiny should be studied by the application of pharmacogenomics in large scale.
Collapse
Affiliation(s)
- Leda Marina Pomes
- Residency Program in Laboratory Medicine, Gabriele d'Annunzio University, Chieti, Italy
| | - Martina Guglielmetti
- Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Enrico Bertamino
- Residency Program in Hygiene and Preventive Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marina Borro
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Martelletti
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy. .,Internal Medicine and Emergency Medicine Unit, Sant'Andrea Hospital, Rome, Italy.
| |
Collapse
|
4
|
Zhang CK, Li ZH, Qiao Y, Zhang T, Lu YC, Chen T, Dong YL, Li YQ, Li JL. VGLUT1 or VGLUT2 mRNA-positive neurons in spinal trigeminal nucleus provide collateral projections to both the thalamus and the parabrachial nucleus in rats. Mol Brain 2018; 11:22. [PMID: 29650024 PMCID: PMC5897998 DOI: 10.1186/s13041-018-0362-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 11/10/2022] Open
Abstract
The trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum. However, whether VGLUT1 or VGLUT2 mRNA-positive projection neurons exist that send their axons to both the thalamus and the parabrachial nucleus (PBN) has not been reported. Thus, in the present study, dual retrograde tract tracing was used in combination with fluorescence in situ hybridization (FISH) for VGLUT1 or VGLUT2 mRNA to identify the existence of VGLUT1 or VGLUT2 mRNA neurons that send collateral projections to both the thalamus and the PBN. Neurons in the Vsp that send collateral projections to both the thalamus and the PBN were mainly VGLUT2 mRNA-positive, with a proportion of 90.3%, 93.0% and 85.4% in the oral (Vo), interpolar (Vi) and caudal (Vc) subnucleus of the Vsp, respectively. Moreover, approximately 34.0% of the collateral projection neurons in the Vc showed Fos immunopositivity after injection of formalin into the lip, and parts of calcitonin gene-related peptide (CGRP)-immunopositive axonal varicosities were in direct contact with the Vc collateral projection neurons. These results indicate that most collateral projection neurons in the Vsp, particularly in the Vc, which express mainly VGLUT2, may relay orofacial nociceptive information directly to the thalamus and PBN via axon collaterals.
Collapse
Affiliation(s)
- Chun-Kui Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zhi-Hong Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu Qiao
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China.,Student Brigade, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ya-Cheng Lu
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
5
|
Abstract
The hypothalamus is involved in the regulation of homeostatic mechanisms and migraine-related trigeminal nociception and as such has been hypothesized to play a central role in the migraine syndrome from the earliest stages of the attack. The hypothalamus hosts many key neuropeptide systems that have been postulated to play a role in this pathophysiology. Such neuropeptides include but are not exclusive too orexins, oxytocin, neuropeptide Y, and pituitary adenylate cyclase activating protein, which will be the focus of this review. Each of these peptides has its own unique physiological role and as such many preclinical studies have been conducted targeting these peptide systems with evidence supporting their role in migraine pathophysiology. Preclinical studies have also begun to explore potential therapeutic compounds targeting these systems with some success in all cases. Clinical efficacy of dual orexin receptor antagonists and intranasal oxytocin have been tested; however, both have yet to demonstrate clinical effect. Despite this, there were limitations in these cases and strong arguments can be made for the further development of intranasal oxytocin for migraine prophylaxis. Regarding neuropeptide Y, work has yet to begun in a clinical setting, and clinical trials for pituitary adenylate cyclase activating protein are just beginning to be established with much optimism. Regardless, it is becoming increasingly clear the prominent role that the hypothalamus and its peptide systems have in migraine pathophysiology. Much work is required to better understand this system and the early stages of the attack to develop more targeted and effective therapies aimed at reducing attack susceptibility with the potential to prevent the attack all together.
Collapse
Affiliation(s)
- Lauren C Strother
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anan Srikiatkhachorn
- International Medical College, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Weera Supronsinchai
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
6
|
Tzabazis A, Kori S, Mechanic J, Miller J, Pascual C, Manering N, Carson D, Klukinov M, Spierings E, Jacobs D, Cuellar J, Frey WH, Hanson L, Angst M, Yeomans DC. Oxytocin and Migraine Headache. Headache 2018; 57 Suppl 2:64-75. [PMID: 28485846 DOI: 10.1111/head.13082] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
This article reviews material presented at the 2016 Scottsdale Headache Symposium. This presentation provided scientific results and rationale for the use of intranasal oxytocin for the treatment of migraine headache. Results from preclinical experiments are reviewed, including in vitro experiments demonstrating that trigeminal ganglia neurons possess oxytocin receptors and are inhibited by oxytocin. Furthermore, most of these same neurons contain CGRP, the release of which is inhibited by oxytocin. Results are also presented which demonstrate that nasal oxytocin inhibits responses of trigeminal nucleus caudalis neurons to noxious stimulation using either noxious facial shock or nitroglycerin infusion. These studies led to testing the analgesic effect of intranasal oxytocin in episodic migraineurs-studies which did not meet their primary endpoint of pain relief at 2 h, but which were highly informative and led to additional rat studies wherein inflammation was found to dramatically upregulate the number of oxytocin receptors available on trigeminal neurons. This importance of inflammation was supported by a series of in vivo rat behavioral studies, which demonstrated a clear craniofacial analgesic effect when a pre-existing inflammatory injury was present. The significance of inflammation was further solidified by a small single-dose clinical study, which showed analgesic efficacy that was substantially stronger in chronic migraine patients that had not taken an anti-inflammatory drug within 24 h of oxytocin dosing. A follow-on open label study examining effects of one month of intranasal oxytocin dosing did show a reduction in pain, but a more impressive decrease in the frequency of headaches in both chronic and high frequency episodic migraineurs. This study led to a multicountry double blind, placebo controlled study studying whether, over 2 months of dosing, "as needed" dosing of intranasal oxytocin by chronic and high frequency migraineurs would reduce the frequency of their headaches compared to a 1-month baseline period. This study failed to meet its primary endpoint, due to an extraordinarily high placebo rate in the country of most of the patients (Chile), but was also highly informative, showing strong results in other countries and strong post hoc indications of efficacy. The results provide a strong argument for further development of intranasal oxytocin for migraine prophylaxis.
Collapse
Affiliation(s)
- Alexander Tzabazis
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | | | | | | | | | - Neil Manering
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | | | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Egilius Spierings
- Department of Neurology, Tufts University School of Dental Medicine, Boston, MA
| | - Daniel Jacobs
- Department of Plastic Surgery, Kaiser Permanente Medical Center, San Jose, CA
| | - Jason Cuellar
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - William H Frey
- HealthPartners Center for Memory and Aging, Regions Hospital, St. Paul, MN, USA
| | - Leah Hanson
- HealthPartners Center for Memory and Aging, Regions Hospital, St. Paul, MN, USA
| | - Martin Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - David C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
7
|
Kilinc E, Dagistan Y, Kukner A, Yilmaz B, Agus S, Soyler G, Tore F. Salmon calcitonin ameliorates migraine pain through modulation of CGRP release and dural mast cell degranulation in rats. Clin Exp Pharmacol Physiol 2018; 45:536-546. [PMID: 29344989 DOI: 10.1111/1440-1681.12915] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
The exact mechanism of migraine pathophysiology still remains unclear due to the complex nature of migraine pain. Salmon calcitonin (SC) exhibits antinociceptive effects in the treatment of various pain conditions. In this study, we explored the mechanisms underlying the analgesic effect of salmon calcitonin on migrane pain using glyceryltrinitrate (GTN)-induced model of migraine and ex vivo meningeal preparations in rats. Rats were intraperitoneally administered saline, GTN (10 mg/kg), vehicle, saline + GTN, SC (50 μg/kg) + GTN, and SC alone. Also, ex vivo meningeal preparations were applied topically 100 μmol/L GTN, 50 μmol/L SC, and SC + GTN. Calcitonin gene-related peptide (CGRP) contents of plasma, trigeminal neurons and superfusates were measured using enzyme-immunoassays. Dural mast cells were stained with toluidine blue. c-fos neuronal activity in trigeminal nucleus caudalis (TNC) sections were determined by immunohistochemical staining. The results showed that GTN triggered the increase in CGRP levels in plasma, trigeminal ganglion neurons and ex vivo meningeal preparations. Likewise, GTN-induced c-fos expression in TNC. In in vivo experiments, GTN caused dural mast cell degranulation, but similar effects were not seen in ex vivo experiments. Salmon calcitonin administration ameliorated GTN-induced migraine pain by reversing the increases induced by GTN. Our findings suggested that salmon calcitonin could alleviate the migraine-like pain by modulating CGRP release at different levels including the generation and conduction sites of migraine pain and mast cell behaviour in the dura mater. Therefore salmon calcitonin may be a new therapeutic choice in migraine pain relief.
Collapse
Affiliation(s)
- Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Yasar Dagistan
- Department of Neurosurgery, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Aysel Kukner
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Sami Agus
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Gizem Soyler
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Fatma Tore
- Department of Physiology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| |
Collapse
|
8
|
Abstract
The calcitonin gene-related peptide (CGRP) receptor is composed of the calcitonin receptor-like receptor (CLR, a class B GPCR) and a single-pass membrane protein known as receptor activity modifying protein type 1 (RAMP1). The levels of the CGRP peptide increase during a migraine attack and infusion of CGRP can provoke a migraine attack. Consequently, there is much interest in inhibiting the actions of CGRP as a way to control migraine. Here we describe the development of small molecule antagonists designed to bind to the CGRP receptor to block its action by preventing binding of the CGRP peptide. We also describe the development of antibody drugs, designed to bind either to the CGRP receptor to block its action, or to bind directly to the CGRP peptide. The field has been very active, with one antibody drug approved and three antibody drugs in phase III clinical trial. Initial programs on the development CGRP antagonists were frustrated by liver toxicity but the current outlook is very promising with five small molecule antagonists in various stages of clinical trial.
Collapse
|
9
|
Duan JX, Zhou Y, Zhou AY, Guan XX, Liu T, Yang HH, Xie H, Chen P. Calcitonin gene-related peptide exerts anti-inflammatory property through regulating murine macrophages polarization in vitro. Mol Immunol 2017; 91:105-113. [DOI: 10.1016/j.molimm.2017.08.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/04/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023]
|