1
|
Kim MS, Sakurai T, Bai H, Bai R, Sato D, Nagaoka K, Chang KT, Godkin JD, Min KS, Imakawa K. Presence of Transcription Factor OCT4 Limits Interferon-tau Expression during the Pre-attachment Period in Sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:638-45. [PMID: 25049833 PMCID: PMC4093334 DOI: 10.5713/ajas.2012.12462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/23/2012] [Accepted: 10/18/2012] [Indexed: 11/27/2022]
Abstract
Interferon-tau (IFNT) is thought to be the conceptus protein that signals maternal recognition of pregnancy in ruminants. We and others have observed that OCT4 expression persists in the trophectoderm of ruminants; thus, both CDX2 and OCT4 coexist during the early stages of conceptus development. The aim of this study was to examine the effect of CDX2 and OCT4 on IFNT gene transcription when evaluated with other transcription factors. Human choriocarcinoma JEG-3 cells were cotransfected with an ovine IFNT (-654-bp)-luciferase reporter (-654-IFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with Cdx2, Ets2 and Jun increased transcription of -654-IFNT-Luc by about 12-fold compared with transfection of the construct alone. When cells were initially transfected with Oct4 (0 h) followed by transfection with Cdx2, Ets2 and/or Jun 24 h later, the expression of -654-IFNT-Luc was reduced to control levels. OCT4 also inhibited the stimulatory activity of CDX2 alone, but not when CDX2 was combined with JUN and/or ETS2. Thus, when combined with the other transcription factors, OCT4 exhibited little inhibitory activity towards CDX2. An inhibitor of the transcriptional coactivator CREB binding protein (CREBBP), 12S E1A, reduced CDX2/ETS2/JUN stimulated -654-IFNT-Luc expression by about 40%, indicating that the formation of an appropriate transcription factor complex is required for maximum expression. In conclusion, the presence of OCT4 may initially minimize IFNT expression; however, as elongation proceeds, the increasing expression of CDX2 and formation of the transcription complex leads to greatly increased IFNT expression, resulting in pregnancy establishment in ruminants.
Collapse
Affiliation(s)
- Min-Su Kim
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rulan Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Daisuke Sato
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Nagaoka
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kyu-Tae Chang
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - James D Godkin
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kwan-Sik Min
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Sakurai T, Sakamoto A, Muroi Y, Bai H, Nagaoka K, Tamura K, Takahashi T, Hashizume K, Sakatani M, Takahashi M, Godkin JD, Imakawa K. Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells. Biol Reprod 2009; 80:1223-31. [PMID: 19211809 DOI: 10.1095/biolreprod.108.073916] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon tau gene (IFNT) is expressed only by mononuclear trophectoderm cells in ruminant ungulates. To our knowledge, its epigenetic regulation and interaction with trophectoderm lineage-specific caudal-related homeobox 2 transcription factor (CDX2) have not been characterized. Herein, we studied differences in chromatin structures and transcription of endogenous bovine IFNT in bovine trophoblast BT-1 and CT-1 cells and in nontrophoblast MDBK cells. Transcripts from endogenous IFNT and CDX2 genes were found in BT-1 and CT-1 cells but not in MDBK cells. Chromatin immunoprecipitation study revealed that CDX2 binding sites exist in proximal upstream regions of IFNT (IFN-tau-c1). Endogenous IFNT transcription in BT-1 cells was increased with CDX2 overexpression but was reduced with short interfering RNA specific for the CDX2 transcript. In chromatin immunoprecipitation studies, histone H3K18 acetylation of IFNT was higher in CT-1 cells than in MDBK cells, while histone H3K9 methylation was lower in CT-1 cells than in nontrophoblast cells. In MDBK cells (but not in CT-1 cells), histone deacetylases were bound to IFNT, which was reversed with trichostatin A treatment; treatment with trichostatin A and CDX2 then increased IFNT mRNA levels that resulted from abundant CDX2 mRNA expression. These data provide evidence that significant increase in endogenous IFNT transcription in MDBK cells (which do not normally express IFNT) can be induced through CDX2 overexpression and high H3K18 acetylation, but lowering of H3K9 methylation could also be required for the degree of IFNT transcription seen in trophoblast cells.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Talbot NC, Powell AM, Ocón OM, Caperna TJ, Camp M, Garrett WM, Ealy AD. Comparison of the interferon-tau expression from primary trophectoderm outgrowths derived from IVP, NT, and parthenogenote bovine blastocysts. Mol Reprod Dev 2008; 75:299-308. [PMID: 17721989 DOI: 10.1002/mrd.20741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of interferon-tau (IFN-tau) is essential for bovine embryo survival in the uterus. An evaluation of IFN-tau production from somatic cell nuclear transfer (NT)-embryo-derived primary trophectoderm cultures in comparison to trophectoderm cultured from parthenogenote (P) and in vitro matured, fertilized, and cultured (IVP) bovine embryos was performed. In Experiment 1, the success/failure ratio for primary trophectoderm colony formation was similar for IVP and NT blastocysts [IVP = 155/29 (84%); NT 104/25 (81%)], but was decreased (P = .05) for P blastocysts [54/43 (56%)]. Most trophectoderm colonies reached diameters of at least 1 cm within 3-4 weeks, and at this time, 72 hr conditioned cell culture medium was measured for IFN-tau concentration by antiviral activity assay. The amount of IFN-tau produced by IVP-outgrowths [4311 IU/mL (n = 155)] was greater (P < .05) than that from NT- [626 IU/mL (n = 104)] and P - [1595 IU/mL (n = 54)] derived trophectoderm. Differential expression of IFN-tau was confirmed by immunoblotting. In Experiment 2, colony formation was again similar for IVP and NT blastocysts [IVP = 70/5 (93%); NT 67/1 (99%)] and less (P < .05) for P blastocysts [65/27 (70%)]. Analysis of trophectoderm colony size after 23 days in culture showed a similar relationship with P-derived colonies being significantly smaller in comparison to IVP and NT colonies. A differential expression of IFN-tau was also observed again, but this time as measured over time in culture. Maximal IFN-tau production was found at day-14 of primary culture and diminished to a minimum by the 23rd day.
Collapse
Affiliation(s)
- Neil C Talbot
- USDA, ARS, ANRI, Biotechnology and Germplasm Laboratory, Beltsville, Maryland 20705-2350, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Imakawa K, Kim MS, Matsuda-Minehata F, Ishida S, Iizuka M, Suzuki M, Chang KT, Echternkamp SE, Christenson RK. Regulation of the ovine interferon-tau gene by a blastocyst-specific transcription factor, Cdx2. Mol Reprod Dev 2006; 73:559-67. [PMID: 16489630 DOI: 10.1002/mrd.20457] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of ovine interferon-tau (oIFNtau), a factor essential for the process of maternal recognition of pregnancy in ruminant ungulates, is restricted to the trophoblast. However, the molecular mechanisms by which oIFNtau expression is restricted to the trophectoderm have not been fully elucidated. The objective of this study was to determine whether oIFNtau gene transcription could be regulated through Cdx2 expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. Human choriocarcinoma JEG3 cells were co-transfected with an oIFNtau (-654 base pair, bp)-luciferase reporter (-654-oIFNtau-Luc) construct and several transcription factor expression plasmids. Compared to -654-oIFNtau-Luc alone, transcription of the -654-oIFNtau-Luc increased more than 30 times when this construct was co-transfected with Cdx2, Ets-2, and c-jun. The degree of transcription decreased to 1/4 levels when the upstream region was reduced to -551 bp, and became minimal with further deletions; this was confirmed with the use of the reporter constructs with mutated c-jun, Ets-2, and/or Cdx2 sites. In trophoblast unrelated NIH3T3 cells, which do not support IFNtau gene transcription, the oIFNtau-Luc transcription was enhanced approximately eightfold when the cells were co-transfected with the Cdx2/Ets-2 or Cdx2/Ets-2/c-jun expression plasmids. These findings were confirmed by gel-shift assays examining Cdx binding site on the oIFNtau gene's upstream region, by immunohistochemical study identifying the presence of Cdx2 in day 15 and 17 ovine conceptuses, and by Western blot detecting Cdx2 in day 17 conceptuses. Our results indicate that oIFNtau gene transcription is regulated by Cdx2, and suggest that Cdx2 could be a key molecule in determining oIFNtau gene transcription by the trophectoderm.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Matsuda-Minehata F, Katsumura M, Kijima S, Christenson RK, Imakawa K. Different levels of ovine interferon-τ gene expressions are regulated through the short promoter region including Ets-2 binding site. Mol Reprod Dev 2005; 72:7-15. [PMID: 15971268 DOI: 10.1002/mrd.20329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of interferon-tau (IFNtau) production, a conceptus secretory protein implicated in the process of maternal recognition of pregnancy, has not been fully elucidated. Among more than 10 ovine IFNtau (oIFNtau) gene sequences characterized, approximately 75% of oIFNtau transcripts expressed in utero is derived from oIFNtau-o10 gene and amounts of transcripts from other oIFNtau genes such as oIFNtau-o8 or oIFNtau-o2 are minimal. It was hypothesized that the variation in expression levels exhibited by oIFNtau-o10 and oIFNtau-o8/-o2 genes was due to differences in the proximal promoter regions of these oIFNtau genes. To test this hypothesis, transient transfection experiments with human choriocarcinoma JEG3 cells were executed with deleted and/or mutated 5'-upstream regions of these oIFNtau genes attached to the chloramphenicol acetyltransferase (CAT) reporter gene. Because only the Ets-2 binding site located in the oIFNtau-o10 gene appeared to differentiate the expression levels of these constructs, the 6 base pair (bp) Ets-2 sequence from the oIFNtau-o10 gene inserted into the oIFNtau-o8/-o2 gene-reporter construct was examined. The insertion of this Ets-2 binding site into the oIFNtau-o8/o2-reporter construct failed to increase the degree of transactivation. Rather than this 6 bp sequence, a 22 bp sequence of the proximal promoter region, including the Ets-2 binding site, of the oIFNtau-o10 gene was required for oIFNtau-o8/-o2-reporter transactivation. By electrophoretic mobility shift assay (EMSA), nuclear protein(s) bound to this 22 bp from the oIFNtau-o10 and oIFNtau-o8/o2 genes differed. These results suggest that the short promoter region including the Ets-2 binding site, not the Ets-2 binding region itself, may determine different levels of oIFNtau gene expressions seen in utero.
Collapse
Affiliation(s)
- Fuko Matsuda-Minehata
- Laboratory of Animal Breeding, Implantation Research Group, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|