1
|
Padron JG, Saito Reis CA, Ng PK, Norman Ing ND, Baker H, Davis K, Kurashima C, Kendal-Wright CE. Stretch Causes cffDNA and HMGB1-Mediated Inflammation and Cellular Stress in Human Fetal Membranes. Int J Mol Sci 2024; 25:5161. [PMID: 38791199 PMCID: PMC11121497 DOI: 10.3390/ijms25105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of parturition by influencing cellular stress mechanisms that make the fetal membranes (FMs) more susceptible to rupture. DAMPs induce inflammation in many different tissue types. Indeed, they precipitate the subsequent release of several proinflammatory cytokines that are known to be key for the weakening of FMs. Previously, we have shown that in vitro stretch of human amnion epithelial cells (hAECs) induces a cellular stress response that increases high-mobility group box-1 (HMGB1) secretion. We have also shown that cell-free fetal DNA (cffDNA) induces a cytokine response in FM explants that is fetal sex-specific. Therefore, the aim of this work was to further investigate the link between stretch and the DAMPs HMGB1 and cffDNA in the FM. These data show that stretch increases the level of cffDNA released from hAECs. It also confirms the importance of the sex of the fetus by demonstrating that female cffDNA induced more cellular stress than male fetuses. Our data treating hAECs and human amnion mesenchymal cells with HMGB1 show that it has a differential effect on the ability of the cells of the amnion to upregulate the proinflammatory cytokines and propagate a proinflammatory signal through the FM that may weaken it. Finally, our data show that sulforaphane (SFN), a potent activator of Nrf2, is able to mitigate the proinflammatory effects of stretch by decreasing the levels of HMGB1 release and ROS generation after stretch and modulating the increase of key cytokines after cell stress. HMGB1 and cffDNA are two of the few DAMPs that are known to induce cytokine release and matrix metalloproteinase (MMP) activation in the FMs; thus, these data support the general thesis that they can function as potential central players in the normal mechanisms of FM weakening during the normal distension of this tissue at the end of a normal pregnancy.
Collapse
Affiliation(s)
- Justin Gary Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Chelsea A. Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Nainoa D. Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Hannah Baker
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Kamalei Davis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Courtney Kurashima
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
| | - Claire E. Kendal-Wright
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.A.S.R.); (P.K.N.); (N.D.N.I.); (H.B.); (K.D.); (C.K.)
- Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96826, USA
| |
Collapse
|
2
|
Xu L, Yang T, Wen M, Wen D, Jin C, An M, Wang L, Liu Y, Fan J. Frontiers in the Etiology and Treatment of Preterm Premature Rupture of Membrane: From Molecular Mechanisms to Innovative Therapeutic Strategies. Reprod Sci 2024; 31:917-931. [PMID: 37989803 DOI: 10.1007/s43032-023-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Preterm premature rupture of membranes (pPROM) poses a significant threat to fetal viability and increases the risk for newborn morbidities. The perinatal period of preterm infants affected by pPROM is often characterized by higher rates of mortality and morbidity, with associated risks of cerebral palsy, developmental delays, compromised immune function, respiratory diseases, and sensory impairments. pPROM is believed to result from a variety of causes, including but not limited to microbially induced infections, stretching of fetal membranes, oxidative stress, inflammatory responses, and age-related changes in the fetal-placental interface. Maternal stress, nutritional deficiencies, and medically induced procedures such as fetoscopy are also considered potential contributing factors to pPROM. This comprehensive review explores the potential etiologies leading to pPROM, delves into the intricate molecular mechanisms through which these etiologies cause membrane ruptures, and provides a concise overview of diagnostic and treatment approaches for pPROM. Based on available therapeutic options, this review proposes and explores the possibilities of utilizing a novel composite hydrogel composed of amniotic membrane particles for repairing ruptured fetal membranes, thereby holding promise for its clinical application.
Collapse
Affiliation(s)
- Ludan Xu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dawei Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Chaoyang Jin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Saito Reis CA, Ng PK, Kurashima CK, Padron J, Kendal-Wright CE. Fetal DNA Causes Sex-Specific Inflammation From Human Fetal Membranes. Front Physiol 2022; 13:901726. [PMID: 35812324 PMCID: PMC9257279 DOI: 10.3389/fphys.2022.901726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammation is central to the mechanisms of parturition, but the lack of understanding of how it is controlled in normal parturition hampers our ability to understand how it may diverge resulting in preterm birth. Cell-free fetal DNA is found in the amniotic fluid, and it is thought to be able to activate inflammation as a danger-associated molecular pattern. Although its levels increases with gestational age, its effect has not been studied on the human fetal membranes. Thus, the aim of this study was to determine if the fetal DNA can trigger inflammation in the human fetal membranes and, thus, potentially contribute to the inflammatory load. Isolated human amniotic epithelial cells and fetal membrane explants were treated apically with fetal DNA causing the translocation of NF-KB into the nucleus of cells and throughout the cells of the explant layers with time. Fetal membrane explants were treated apically with either small or larger fragments of fetal DNA. IL-6, TNFα, and GM-CSF secretion was measured by ELISA, and pro-MMP2 and pro-MMP9 activity was measured by zymography from apical and basal media. Increased apical IL-6 secretion and basal pro-MMP2 activity was seen with small fragments of fetal DNA. When the data were disaggregated based on fetal sex, males had significant increases in IL-6 secretion and basal increased activity in pro-MMP2 and 9, whereas females had significantly increased basal secretion of TNFα. This was caused by the smaller fragments of fetal DNA, whereas the larger fragments did not cause any significant increases. Male fetal DNA had significantly lower percentages of methylation than females. Thus, when the cytokine and pro-MMP activity data were correlated with methylation percentage, IL-6 secretion significantly correlated negatively, whereas GM-CSF secretion positively correlated. These data support the role of fetal DNA as an inflammatory stimulus in the FM, as measured by increased NF-κB translocation, cytokine secretion, and increased pro-MMP activity. However, the data also suggested that the responses are different from FM tissues of male and female fetuses, and both the fragment size and methylation status of the fetal DNA can influence the magnitude and type of molecule secreted.
Collapse
Affiliation(s)
- Chelsea A. Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | | | - Justin Padron
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Claire Enid Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- *Correspondence: Claire Enid Kendal-Wright,
| |
Collapse
|
4
|
Padron JG, Norman Ing ND, Ng PK, Kendal-Wright CE. Stretch Causes Cell Stress and the Downregulation of Nrf2 in Primary Amnion Cells. Biomolecules 2022; 12:766. [PMID: 35740891 PMCID: PMC9220942 DOI: 10.3390/biom12060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear-factor-E2-related factor 2 (Nrf2) is a key transcription factor for the regulation of cellular responses to cellular stress and inflammation, and its expression is significantly lower after spontaneous term labor in human fetal membranes. Pathological induction of inflammation can lead to adverse pregnancy outcomes such as pre-eclampsia, preterm labor, and fetal death. As stretch forces are known to act upon the fetal membranes in utero, we aimed to ascertain the effect of stretch on Nrf2 to increase our understanding of the role of this stimulus on cells of the amnion at term. Our results indicated a significant reduction in Nrf2 expression in stretched isolated human amnion epithelial cells (hAECs) that could be rescued with sulforaphane treatment. Downregulation of Nrf2 as a result of stretch was accompanied with activation of proinflammatory nuclear factor-kB (NF-kB) and increases in LDH activity, ROS, and HMGB1. This work supports stretch as a key modulator of cellular stress and inflammation in the fetal membranes. Our results showed that the modulation of the antioxidant response pathway in the fetal membranes through Nrf2 activation may be a viable approach to improve outcomes in pregnancy.
Collapse
Affiliation(s)
- Justin Gary Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Nainoa D. Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
| | - Claire E. Kendal-Wright
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.D.N.I.); (P.K.N.)
- Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96826, USA
| |
Collapse
|
5
|
Singh N, Herbert B, Sooranna G, Shah NM, Das A, Sooranna SR, Johnson MR. Is there an inflammatory stimulus to human term labour? PLoS One 2021; 16:e0256545. [PMID: 34464407 PMCID: PMC8407546 DOI: 10.1371/journal.pone.0256545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Inflammation is thought to play a pivotal role in the onset of term and some forms of preterm labour. Although, we recently found that myometrial inflammation is a consequence rather than a cause of term labour, there are several other reproductive tissues, including amnion, choriodecidua parietalis and decidua basalis, where the inflammatory stimulus to labour may occur. To investigate this, we have obtained amnion, choriodecidual parietalis and decidua basalis samples from women at various stages of pregnancy and spontaneous labour. The inflammatory cytokine profile in each tissue was determine by Bio-Plex Pro® cytokine multiplex assays and quantitative RT-PCR. Active motif assay was used to study transcription activation in the choriodecidua parietalis. Quantitative RT-PCR was use to study the pro-labour genes (PGHS-2, PGDH, OTR and CX43) in all of the tissues at the onset of labour and oxytocin (OT) mRNA expression in the choriodecidual parietalis and decidua basalis. Statistical significance was ascribed to a P value <0.05. In the amnion and choriodecidua parietalis, the mRNA levels of various cytokines decreased from preterm no labour to term no labour samples, but the protein levels were unchanged. The choriodecidua parietalis showed increase in the protein levels of IL-1β and IL-6 in the term early labour samples. In the amnion and decidua basalis, the protein levels of several cytokines rose in term established labour. The multiples of the median derived from the 19-plex cytokine assay were greater in term early labour and term established labour samples from the choriodecidua parietalis, but only in term established labour for myometrium. These data suggest that the inflammatory stimulus to labour may begin in the choriodecidua parietalis, but the absence of any change in prolabour factor mRNA levels suggests that the cytokines may act on the myometrium where we observed changes in transcription factor activation and increases in prolabour gene expression in earlier studies.
Collapse
Affiliation(s)
- Natasha Singh
- Chelsea and Westminster Hospital, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- * E-mail:
| | - Bronwen Herbert
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Garvin Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Chelsea and Westminster Hospital, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ananya Das
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Suren R. Sooranna
- Chelsea and Westminster Hospital, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Chelsea and Westminster Hospital, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Richardson LS, Radnaa E, Urrabaz-Garza R, Lavu N, Menon R. Stretch, scratch, and stress: Suppressors and supporters of senescence in human fetal membranes. Placenta 2020; 99:27-34. [PMID: 32750642 PMCID: PMC7530028 DOI: 10.1016/j.placenta.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Throughout gestation, amnion membranes undergo mechanical and or physiological stretch, scratch, or stress which is withstood by repairing and remodeling processes to protect the growing fetus. At term, increased oxidative stress (OS) activates p38MAPK, induces senescence, and inflammation contributing to membrane dysfunction to promote labor. However, the signaling initiated by stretch and scratch is still unclear. This study compares the induction of p38MAPK mediated senescence by stretch, scratch, and stress in human amnion epithelial cells (AECs). METHODS Primary AECs from term, not-in-labor, fetal membranes were cultured using the following conditions (N = 3); 1) CellFlex chambers with or without 20% biaxial stretch, 2) 8-well coverslips with or without scratch, and 3) cells exposed to cigarette smoke extract (CSE) inducing OS. p38MAPK (Western blot or immunocytochemistry), senescence activation, and inflammation (matrix metalloproteinases 9 [MMP9] activity-ELISA) were determined in cells exposed to various conditions. T-test and One-Way ANOVA was used to assess significance. RESULTS Biological membrane extension, mimicked by 20% biaxial stretch of AEC, maintained an epithelial morphology and activated P-p38MAPK (P = 0.02) compared to the non-stretch controls, but did not induce senescence or MMP9 activation. AEC scratches were healed within 40-hrs, which included proliferation, migration, and cellular transitions aided by p38MAPK activation but not senescence. CSE induced OS increased p38MAPK (P = 0.018) activation, senescence (P = 0.019), and MMP9 (P = 0.02). CONCLUSION Physiologic stretch and scratch experienced during gestation can cause p38MAPK activation without causing senescence or inflammation. This may be indicative of p38MAPK's role in tissue remodeling during pregnancy. Overwhelming OS, experienced at term, results in P-p38MAPK mediated senescence and inflammation to disrupt membrane remodeling.
Collapse
Affiliation(s)
- Lauren S Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Narmada Lavu
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
7
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
8
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
9
|
Xu W, Zhou J, You M, Lu C, Yang W, Gong Y, Dong X. Pre-B-cell colony enhancing factor regulates the alveolar epithelial sodium-water transport system through the ERK and AKT pathways. Am J Transl Res 2019; 11:5824-5835. [PMID: 31632551 PMCID: PMC6789215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
The sodium-water transport system is crucial for alveolar fluid clearance. The pulmonary edema caused by extracorporeal circulation is mainly due to increased alveolar capillary permeability and reduced fluid clearance. We previously demonstrated that pre-B-cell colony enhancing factor (PBEF) increases alveolar capillary permeability and inhibits the sodium-water transport system. However, the specific mechanism by which PBEF inhibits the sodium-water transport system is unclear. In this study, we used HPAEpiC (alveolar type II epithelial cells) to construct an anoxia-reoxygenation model and simulate the extracorporeal circulation microenvironment. The impact of PBEF on the expression of genes and proteins implicated in sodium transport and its effect on the activation status of the ERK, P38, and AKT signaling pathways were explored in HPAEpiC by real-time fluorescent PCR and western blotting. Specific inhibitors were employed to verify the role of the three signaling pathways in the regulation of the sodium-water transport system. PBEF was substantially non-toxic to alveolar epithelial cells, inhibited the expression of ENaC, NKA, and AQP1, and affected the ERK, P38, and AKT signaling pathways. ERK pathway inhibitors attenuated PBEF-induced downregulation of EnaC, NKA, and AQP1, and increased NKA activity. P38 pathway inhibitors only attenuated PBEF-induced suppression of NKA expression. AKT pathway inhibitors potentiated the inhibitory effects of PBEF, reducing EnaC, AQP1, and NKA expression, as well as NKA activity. In conclusion, PBEF inhibited the sodium-water transport system by activation of ERK and suppression of AKT signaling.
Collapse
Affiliation(s)
- Weichang Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Miaomiao You
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| |
Collapse
|
10
|
Musilova I, Kolackova M, Andrys C, Drahosova M, Baranová I, Chmelarova M, Stranik J, Jacobsson B, Kacerovsky M. Nicotinamide phosphoribosyltransferase and intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2019; 34:736-746. [PMID: 31056993 DOI: 10.1080/14767058.2019.1615049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: The amniotic fluid nicotinamide phosphoribosyltransferase (NAMPT) levels have not been compared among women with preterm prelabor rupture of membranes (PPROM) comorbid with intra-amniotic infection, sterile intra-amniotic inflammation (IAI), colonization, or without IAI and microbial invasion of the amniotic cavity (MIAC). Therefore, the main aim was to quantify the amniotic fluid NAMPT in women with PPROM complicated by intra-amniotic infection, sterile IAI, or colonization. The second aim was to characterize the diagnostic indices of NAMPT to reveal IAI. The third aim was to determine whether the cervical fluid and maternal serum NAMPT quantitation might be of value in the identification of intra-amniotic inflammatory complications in PPROM.Methods of study: NAMPT levels in amniotic fluid, cervical fluid, and maternal serum were assessed in three independent cohorts of women with singleton pregnancies complicated by PPROM between 24+0 and 36+6 weeks of gestation consisting of 88, 121, and 88 women, respectively. Amniotic fluid samples were obtained by transabdominal amniocentesis, cervical fluid samples were obtained using a Dacron polyester swab and maternal blood was obtained by venipuncture of the cubital vein. The NAMPT levels were measured by an enzyme-linked immunosorbent assay. Testing for MIAC and IAI was performed on all women, who were then categorized into four subgroups: intra-amniotic infection (MIAC and IAI), sterile IAI (IAI alone), colonization (MIAC alone), and without MIAC and IAI.Results: Women with intra-amniotic infection and women with sterile IAI had higher NAMPT levels than did women with colonization and women without MIAC and IAI (intra-amniotic infection: median 73.6 ng/mL, sterile IAI: median 55.5 ng/mL, colonization: median 12.1 ng/mL, without MIAC and IAI: 10.6 ng/mL; p < .0001). An amniotic fluid NAMPT level of 37 ng/mL was the best value for the detection of intra-amniotic infection in women with PPROM. Cervical fluid (p = .51) and maternal serum (p = .50) NAMPT levels did not reflect intra-amniotic inflammatory complications in women with PPROM.Conclusions: Intra-amniotic infection and sterile IAI are associated with higher NAMPT levels in amniotic fluid but not in cervical fluid or maternal serum in women with PPROM. Amniotic fluid NAMPT might be a marker for invasive identification of IAI in PPROM.
Collapse
Affiliation(s)
- Ivana Musilova
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marcela Drahosova
- Department of Clinical Immunology and Allergy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Baranová
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Hadley EE, Richardson LS, Torloni MR, Menon R. Gestational tissue inflammatory biomarkers at term labor: A systematic review of literature. Am J Reprod Immunol 2017; 79. [PMID: 29076197 DOI: 10.1111/aji.12776] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Parturition at term is characterized by inflammatory overload in both feto-maternal tissues. Despite the large number of individual studies on changes in inflammatory biomarkers linked to labor, a comprehensive profile of them in each of the uterine compartments is not available to better understand their mechanistic contributions to labor. This systematic review investigated the pro- and anti-inflammatory biomarkers reported in intra-uterine tissues (amnion, chorion, decidua, placenta, and myometrium) at term labor. We conducted a systematic review of studies on pro- and anti-inflammatory biomarkers (mRNA and/or protein) reported in feto-maternal tissues during normal human term labor, published in English (1980-2016), in 3 electronic data bases. From a total of 3712 citations, 172 were included for final review. Each tissue expresses a unique set of biomarkers at the time of term labor, but there is significant overlap between tissues. All tissues had IL-6, IL-8, IL-1β, COX-2, PGE-2, TNF-α, and hCAP18 in common at term labor. Common and unique inflammatory biomarkers are expressed in various feto-maternal compartments at term labor. Increase in pro-inflammatory markers in all gestational tissue signifies their harmonious functional role in promoting labor. Anti-inflammatory markers at term labor are hardly reported.
Collapse
Affiliation(s)
- Emily E Hadley
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren S Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Maria R Torloni
- Department of Obstetrics & Gynecology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
12
|
Pavlová T, Zlámal F, Šplíchal Z, Tomandl J, Hodická Z, Ventruba P, Bienertová-Vašků J. Umbilical cord blood and maternal visfatin (PBEF/NAMPT) concentrations in preterm birth with and without preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2017; 31:1811-1818. [DOI: 10.1080/14767058.2017.1328493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tereza Pavlová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Research Centre for the Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Filip Zlámal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Research Centre for the Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Zbyněk Šplíchal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Josef Tomandl
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Hodická
- Department of Obstetrics and Gynaecology, University Hospital Brno, Brno, Czech Republic
| | - Pavel Ventruba
- Department of Obstetrics and Gynaecology, University Hospital Brno, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Research Centre for the Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| |
Collapse
|
13
|
Sato BL, Collier ES, Vermudez SA, Junker AD, Kendal-Wright CE. Human amnion mesenchymal cells are pro-inflammatory when activated by the Toll-like receptor 2/6 ligand, macrophage-activating lipoprotein-2. Placenta 2016; 44:69-79. [PMID: 27452440 PMCID: PMC4964608 DOI: 10.1016/j.placenta.2016.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/21/2016] [Accepted: 06/10/2016] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Infection accounts for over 40% of preterm premature rupture of the fetal membranes (PPROM), a major cause of preterm birth. Toll-like receptors (TLR) play key roles in pathogen surveillance but their expression and function in amnion mesenchymal cells (AMC) is unclear. The aims of this study were to determine the expression of all TLR isoforms and the effect of macrophage-activating lipoprotein-2 (MALP-2), derived from a common pathogen involved in PPROM, on human AMC. METHODS AMC were isolated from normal, term amnion from repeat cesarean section. Semi-quantitative RT-PCR, immunocytochemistry, immunohistochemistry and western blotting were used to detect TLR isoform expression. Immunocytochemistry of NF-κB p65, pro-inflammatory cytokine secretion (ELISA), MTT assay, LDH assay, immunoblotting of cytosolic cytochrome c and cleaved caspase-3, and expression of 84 microRNAs by Qiagen miRNA PCR array were used to determine the functional effect of MALP-2 on AMC. RESULTS TLR1-10 was detected in AMC, and protein expression of TLR2, 4, and 6 were confirmed. MALP-2 induced nuclear translocation of p65, reaching significance after 45 min (ANOVA, P < 0.05). MALP-2 did not cause apoptosis but did lead to significant secretion of IL-4, IL-6, and IL-8 (P < 0.05, 0.01, 0.001, respectively) and significant changes in miRNA-320a and miRNA-18a (P < 0.05). DISCUSSION These results suggest that AMC elicit a pro-inflammatory response following stimulation with the known TLR2/6 ligand MALP-2. This data supports the idea that AMC express the innate immune system receptors that could help with immune surveillance during infection and contribute to inflammatory responses that lead to PPROM.
Collapse
Affiliation(s)
- Brittany L Sato
- Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Ave., Honolulu, HI, 96816, USA.
| | - Eric S Collier
- Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Ave., Honolulu, HI, 96816, USA
| | - Sheryl Anne Vermudez
- Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Ave., Honolulu, HI, 96816, USA
| | - Anthony D Junker
- Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Ave., Honolulu, HI, 96816, USA
| | - Claire E Kendal-Wright
- Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Ave., Honolulu, HI, 96816, USA; Department of Obstetrics, Gynecology, and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Manoa, 651 Ilalo St., Honolulu, HI, 96813, USA
| |
Collapse
|
14
|
Özcan E, Işıl Saygun N, Serdar MA, Umut Bengi V, Kantarcı A. Non-Surgical Periodontal Therapy Reduces Saliva Adipokine and Matrix Metalloproteinase Levels in Periodontitis. J Periodontol 2016; 87:934-43. [DOI: 10.1902/jop.2016.160046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Allen TK, Feng L, Nazzal M, Grotegut CA, Buhimschi IA, Murtha AP. The Effect of Progestins on Tumor Necrosis Factor α-Induced Matrix Metalloproteinase-9 Activity and Gene Expression in Human Primary Amnion and Chorion Cells In Vitro. Anesth Analg 2015; 120:1085-1094. [PMID: 25806402 PMCID: PMC4406818 DOI: 10.1213/ane.0000000000000708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Current treatment modalities for preventing preterm premature rupture of membranes are limited, but progestins may play a role. Tumor necrosis factor α (TNFα) enhances matrix metalloproteinase-9 (MMP-9) gene expression and activity in fetal membranes, contributing to membrane weakening and rupture. We previously demonstrated that progestins attenuate TNFα-induced MMP-9 activity in a cytotrophoblast cell line. However, whether they have a similar effect in primary amnion and chorion cells of fetal membranes is unknown. In this study, we evaluated the effect of progestins on basal and TNFα-induced MMP-9 activity and gene expression in primary chorion and amnion cells harvested from the fetal membranes of term nonlaboring patients. METHODS Primary amnion and chorion cells were isolated from fetal membranes obtained from term uncomplicated nonlaboring patients following elective cesarean delivery (n = 11). Confluent primary amnion and chorion cell cultures were both pretreated with vehicle (control), progesterone (P4), 17α-hydroxyprogesterone caproate (17P), or medroxyprogesterone acetate (MPA) at 10 M concentration for 6 hours followed by stimulation with TNFα at 10 ng/mL for an additional 24 hours. Cell cultures pretreated with the vehicle only served as the unstimulated control and the vehicle stimulated with TNFα served as the stimulated control. Both controls were assigned a value of 100 units. Cell culture medium was harvested for MMP-9 enzymatic activity quantification using gelatin zymography. Total RNA was extracted for quantifying MMP-9 gene expression using real-time quantitative PCR. Basal MMP-9 activity and gene expression data were normalized to the unstimulated control. TNFα-stimulated MMP-9 activity and gene expression were normalized to the stimulated control. The primary outcome was the effect of progestins on TNFα-induced MMP-9 enzymatic activity in term human primary amnion and chorion cells in vitro. Secondary outcomes included the effect of progestin therapy on TNFα-induced MMP-9 gene expression and on basal MMP-9 activity and gene expression in primary amnion and chorion cells in vitro. RESULTS Primary cells were harvested from 11 patients. Compared with the unstimulated control, TNFα increased MMP-9 activity (P = 0.005 versus control in primary amnion cells and P < 0.001 versus control in primary chorion cells) and MMP-9 gene expression (P = 0.030 versus control in primary amnion cells, P < 0.001 versus control in primary chorion cells). Compared with the unstimulated controls, MPA, but not P4 or 17P, reduced basal MMP-9 activity [mean difference (95% CI) -49.6 (-81.9, -17.3) units, P = 0.001] and gene expression [mean difference (95% CI) -53.4 (-105.9, -0.9) units, P = 0.045] in primary amnion cells. Compared with the stimulated control, MPA also reduced TNFα-induced MMP-9 activity [mean difference (95% CI) -69.0 (-91.8, -46.3) units, P < 0.001] and gene expression [mean difference (95% CI) -86.0 (-120.7, -51.3) units, P < 0.001] in primary amnion cells. Progestin pretreatment had no significant effect on basal or TNFα-induced MMP-9 activity and gene expression in primary chorion cells. CONCLUSIONS The inhibitory effect of MPA on both basal and TNFα-induced MMP-9 activity and gene expression in primary amnion cells demonstrate a possible mechanism by which progestins may prevent fetal membrane weakening leading to preterm premature rupture of membranes.
Collapse
Affiliation(s)
- Terrence K Allen
- From the Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina; Department of Obstetrics and Gynecology Duke University Medical Center, Durham, North Carolina; Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and Departments of Pediatrics and Obstetrics/Gynecology, The Ohio State College of Medicine, Columbus, Ohio
| | | | | | | | | | | |
Collapse
|
16
|
Tsai PJS, Davis J, Thompson K, Bryant-Greenwood G. Visfatin/Nampt and SIRT1: Roles in Postterm Delivery in Pregnancies Associated With Obesity. Reprod Sci 2015; 22:1028-36. [PMID: 25670718 DOI: 10.1177/1933719115570908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Visfatin is both a systemic adipocytokine and the cytosolic enzyme, nicotinamide phosphoribosyl transferase (Nampt). This is a longevity protein, which extends the lifespan of human cells by activating sirtuin 1 (SIRT1). In this study, we sought a role for these proteins in obese pregnant women, who experience more postterm deliveries. Thus, 78 women (26 lean, 24 overweight, and 28 obese) were recruited and maternal blood and placental tissue collected prior to term labor. Plasma levels were measured by enzyme-linked immunosorbent assay and quantitative immunohistochemistry used for placenta. We confirmed maternal plasma interleukin 6 increased according to prepregnancy body mass index (BMI; P < .0001) and showed a linear relationship between BMI and syncytiotrophoblast visfatin/Nampt (P = .021) but not with its levels in maternal plasma. Both systemic and placental visfatin/Nampt were significantly associated with placental SIRT1 levels (P = .028 and .017). Thus, higher visfatin/Nampt may prevent a labor-associated decrease in SIRT1 leading to postterm delivery in obesity.
Collapse
Affiliation(s)
- Pai-Jong Stacy Tsai
- Department of Obstetrics, Gynecology, and Women's Health, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, USA
| | - James Davis
- University of Hawaii, John A. Burns School of Medicine, Biostatistic Core, Honolulu, HI, USA
| | - Karen Thompson
- Department of Pathology, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Gillian Bryant-Greenwood
- Department of Obstetrics, Gynecology, and Women's Health, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, USA
| |
Collapse
|
17
|
Kelsh R, You R, Horzempa C, Zheng M, McKeown-Longo PJ. Regulation of the innate immune response by fibronectin: synergism between the III-1 and EDA domains. PLoS One 2014; 9:e102974. [PMID: 25051083 PMCID: PMC4106844 DOI: 10.1371/journal.pone.0102974] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/24/2014] [Indexed: 01/22/2023] Open
Abstract
Fibronectin is a critical component of the extracellular matrix and alterations to its structure will influence cellular behavior. Matrix fibronectin is subjected to both mechanical and biochemical regulation. The Type III domains of fibronectin can be unfolded in response to increased cellular contractility, included or excluded from the molecule by alternative splicing mechanisms, or released from the matrix by proteolysis. Using Inflammatory Cytokine microarrays we found that the alternatively spliced fibronectin Type III domain, FnEDA, and the partially unfolded III-1 domain, FnIII-1c, induced the expression of a multitude of pro-inflammatory cytokines in human dermal fibroblasts, most notably CXCL1-3, IL-8 and TNF-α. FnIII-1c, a peptide representing an unfolded intermediate structure of the first Type III domain has been shown to initiate the toll-like receptor-4 (TLR4)-NFκB-dependent release of cytokines from human dermal fibroblasts (You, et al., J. Biol. Chem., 2010). Here we demonstrate that FnIII-1c and the alternatively spliced FnEDA domain induce a TLR4 dependent activation of p38 MAP kinase and its downstream effector, MAPKAP Kinase-2 (MK-2), to regulate cytokine expression in fibroblasts. RT-qPCR analysis indicated that the p38-MK-2 pathway regulates IL-8 mRNA stability. Interestingly, addition of FnIII-1c and FnEDA synergistically enhanced TLR4-dependent IL-8 release. These data indicate that Fn contains two Type III domains which can activate TLR signaling to induce an inflammatory response in fibroblasts. Furthermore, our data identifies the NF-κB and p38/MK2 signaling pathways as transducers of signals initiated in response to structural changes in fibronectin.
Collapse
Affiliation(s)
- Rhiannon Kelsh
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Ran You
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Carol Horzempa
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Mingzhe Zheng
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Paula J. McKeown-Longo
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Stampalija T, Chaiworapongsa T, Romero R, Tarca AL, Bhatti G, Chiang PJ, Than NG, Ferrazzi E, Hassan SS, Yeo L. Soluble ST2, a modulator of the inflammatory response, in preterm and term labor. J Matern Fetal Neonatal Med 2013; 27:111-21. [PMID: 23688338 DOI: 10.3109/14767058.2013.806894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Intra-amniotic infection/inflammation (IAI) is causally linked with spontaneous preterm labor and delivery. The ST2L receptor and its soluble form (sST2) are capable of binding to interleukin (IL)-33, a member of the IL-1 superfamily. Members of this cytokine family have been implicated in the onset of spontaneous preterm labor in the context of infection. Soluble ST2 has anti-inflammatory properties, and plasma concentrations are elevated in systemic inflammation, such as sepsis, acute pyelonephritis in pregnancy and the fetal inflammatory response syndrome. The aims of this study were to examine: (1) whether amniotic fluid concentrations of sST2 change with IAI, preterm, and term parturition; and (2) if mRNA expression of ST2 in the chorioamniotic membranes changes with acute histologic chorioamnionitis in women who deliver preterm. METHOD A cross-sectional study was conducted to determine amniotic fluid concentrations of sST2 in: (1) women with preterm labor (PTL) who delivered at term (n=49); (2) women with PTL who delivered preterm without IAI (n=21); (3) women with PTL who delivered preterm with IAI (n=31); (4) term pregnancies not in labor (n=13); and (5) term pregnancies in labor (n=43). The amniotic fluid concentration of sST2 was determined by ELISA. The mRNA expression of ST2 in the chorioamniotic membranes of women who delivered preterm with (n=24), and without acute histologic chorioamnionitis (n=19) was determined by qRT-PCR. RESULTS (1) Patients with PTL who delivered preterm with IAI had a lower median amniotic fluid concentration of sST2 compared to those with PTL who delivered preterm without IAI [median 410 ng/mL, inter-quartile range (IQR) 152-699 ng/mL versus median 825 ng/mL, IQR 493-1216 ng/mL; p=0.0003] and those with PTL who delivered at term [median 410 ng/mL, IQR 152-699 ng/mL versus median 673 ng/mL, IQR 468-1045 ng/mL; p=0.0003]; (2) no significant differences in the median amniotic fluid concentration of sST2 were observed between patients with PTL who delivered at term and those who delivered preterm without IAI (p=0.4), and between women at term in labor and those at term not in labor (p=0.9); (3) the mean mRNA expression of ST2 was 4-fold lower in women who delivered preterm with acute histologic chorioamnionitis than in those without this lesion (p=0.008). CONCLUSIONS The median sST2 amniotic fluid concentration and mRNA expression of ST2 by chorioamniotic membranes is lower in PTL associated with IAI and acute histologic chorioamnionitis than in PTL without these conditions. Changes in the median amniotic fluid sST2 concentration are not observed in preterm and term parturition without IAI. Thus, amniotic fluid sST2 in the presence of IAI behaves differently when compared to sST2 in the plasma of individuals affected by fetal inflammatory response syndrome, acute pyelonephritis in pregnancy, and adult sepsis. Decreased concentrations of sST2 in IAI are likely to promote a pro-inflammatory response, which is important for parturition in the context of infection.
Collapse
Affiliation(s)
- Tamara Stampalija
- Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, Maryland, and Detroit, Michigan , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Astern JM, Collier AC, Kendal-Wright CE. Pre-B cell colony enhancing factor (PBEF/NAMPT/Visfatin) and vascular endothelial growth factor (VEGF) cooperate to increase the permeability of the human placental amnion. Placenta 2012; 34:42-9. [PMID: 23151382 DOI: 10.1016/j.placenta.2012.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/20/2012] [Accepted: 10/15/2012] [Indexed: 12/16/2022]
Abstract
Fluid efflux across the region of the amnion overlying the placenta is an essential component of the intramembranous absorption pathway that maintains amniotic fluid volume homeostasis. Dysregulation of this pathway may result in adverse pregnancy outcomes, however the factors controlling amnion permeability are unknown. Here, we report a novel mechanism that increases placental amnion permeability. Pre-B Cell Colony Enhancing Factor (PBEF) is a stress-responsive cytokine expressed by the human amnion, and is known to induce Vascular Endothelial Growth Factor (VEGF) production by other cell types. Interestingly, VEGF is up-regulated in the ovine amnion when intramembranous absorption is augmented. In this study, we show that PBEF induced VEGF secretion by primary human amniotic epithelial cells (AEC) derived from the placental amnion, as well as from the reflected amnion that lines the remainder of the gestational sac. Further, PBEF treatment led to the increased expression of VEGFR2 in placental AEC, but not reflected AEC. To test the hypothesis that PBEF and VEGF increase placental amnion permeability, we monitored the transfer of 2',7'-dichlorofluorescein (DCF) from the fetal to the maternal side of human amnion explants. A treatment regimen including both PBEF and VEGF increased the rate of DCF transfer across the placental amnion, but not the reflected amnion. In summary, our results suggest that by augmenting VEGFR2 expression in the placental amnion, PBEF primes the tissue for a VEGF-mediated increase in permeability. This mechanism may have important implications in amniotic fluid volume control throughout gestation.
Collapse
Affiliation(s)
- J M Astern
- Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Ave, Honolulu, HI 96816, USA.
| | | | | |
Collapse
|
20
|
Kobayashi H. The entry of fetal and amniotic fluid components into the uterine vessel circulation leads to sterile inflammatory processes during parturition. Front Immunol 2012; 3:321. [PMID: 23109934 PMCID: PMC3478564 DOI: 10.3389/fimmu.2012.00321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/03/2012] [Indexed: 01/12/2023] Open
Abstract
Pro-inflammatory cytokines play an important role during the process of human parturition. The focus of this review was to explore the contribution of biological, biochemical, and genetic changes in the onset of term labor. This article reviews the English-language literature on inflammatory, hormonal, and immunological factors in an effort to identify the molecular basis of human parturition. The majority of the genes and proteins up-regulated in parturition at term are related to four functional categories, mechanical stretch-mediated damage-associated molecular patterns (DAMPs) activation, response to immunity, induction of inflammatory signaling, and progressive uterine myometrial contractility and resultant term birth. Mechanical stretch could promote the entry of amniotic fluid components into the uterine vessel circulation that is the common physiologic mechanism at term prior to labor. The fetal or amniotic fluid-derived DAMPs could activate the immune system. The inflammatory mediators are produced by infiltrating activated leukocytes and by the reproductive tissues themselves such as myometrium, and subsequently lead to uterine contractions. This review supports the sterile inflammation hypothesis that there are at least two phases of human parturition: the initial wave of the entry of amniotic fluid components into uterine vasculatures would be followed by the second big wave of subsequent myometrial contraction.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University Kashihara, Nara, Japan
| |
Collapse
|
21
|
Lappas M. Visfatin regulates the terminal processes of human labour and delivery via activation of the nuclear factor-κB pathway. Mol Cell Endocrinol 2012; 348:128-34. [PMID: 21839801 DOI: 10.1016/j.mce.2011.07.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
The inflammatory process plays a pivotal role during the pathogenesis of human labour, both at term and preterm. Visfatin levels increase during normal human pregnancy and in infection associated preterm labour. The effects of visfatin in the processes of human labour and delivery, however, are not known. The aim of this study was to determine the effect of visfatin on the expression and release of pro-labour mediators in human placenta. Samples were obtained from normal pregnancies at the time of Caesarean section. Human placenta was incubated in the absence (basal control) or presence of a 50 ng/ml visfatin for 24 h (n=6). Inflammatory gene expression was analysed by quantitative RT-PCR (qRT-PCR), the medium was collected and cytokine, prostaglandin and 8-isoprostane (marker of oxidative stress) release was quantified by ELISA, and secretory protease activity by zymography. Visfatin significantly increased IL-6 and IL-8 gene expression and secretion, COX-2 expression and resultant prostaglandin (PG) E(2) and PGF(2α) release, and 8-isoprostane release. There was, however, no effect of visfatin on pro MMP-9 enzyme activity. These actions of visfatin were elicited via the nuclear factor-κB (NF-κB) pathway as visfatin induced the degradation of IκB-α (inhibitor of NF-κB) whilst increasing NF-κB p65 DNA binding activity. Further to this, visfatin-induced pro-labour responses were abrogated by treatment with the NF-κB inhibitor BAY 11-7082. Collectively, these data indicate that visfatin activates pro-inflammatory cytokine release and phospholipid metabolism in human placenta via activation of the NF-κB pathway. Thus, visfatin represents a novel cytokine linked to the events of human labour initiation.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.
| |
Collapse
|