1
|
Diniz MS, Grilo LF, Tocantins C, Falcão-Pires I, Pereira SP. Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb. Metabolites 2023; 13:845. [PMID: 37512552 PMCID: PMC10386510 DOI: 10.3390/metabo13070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity incidence has been increasing at an alarming rate, especially in women of reproductive age. It is estimated that 50% of pregnancies occur in overweight or obese women. It has been described that maternal obesity (MO) predisposes the offspring to an increased risk of developing many chronic diseases in an early stage of life, including obesity, type 2 diabetes, and cardiovascular disease (CVD). CVD is the main cause of death worldwide among men and women, and it is manifested in a sex-divergent way. Maternal nutrition and MO during gestation could prompt CVD development in the offspring through adaptations of the offspring's cardiovascular system in the womb, including cardiac epigenetic and persistent metabolic programming of signaling pathways and modulation of mitochondrial metabolic function. Currently, despite diet supplementation, effective therapeutical solutions to prevent the deleterious cardiac offspring function programming by an obesogenic womb are lacking. In this review, we discuss the mechanisms by which an obesogenic intrauterine environment could program the offspring's cardiovascular metabolism in a sex-divergent way, with a special focus on cardiac mitochondrial function, and debate possible strategies to implement during MO pregnancy that could ameliorate, revert, or even prevent deleterious effects of MO on the offspring's cardiovascular system. The impact of maternal physical exercise during an obesogenic pregnancy, nutritional interventions, and supplementation on offspring's cardiac metabolism are discussed, highlighting changes that may be favorable to MO offspring's cardiovascular health, which might result in the attenuation or even prevention of the development of CVD in MO offspring. The objectives of this manuscript are to comprehensively examine the various aspects of MO during pregnancy and explore the underlying mechanisms that contribute to an increased CVD risk in the offspring. We review the current literature on MO and its impact on the offspring's cardiometabolic health. Furthermore, we discuss the potential long-term consequences for the offspring. Understanding the multifaceted effects of MO on the offspring's health is crucial for healthcare providers, researchers, and policymakers to develop effective strategies for prevention and intervention to improve care.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Zhao Y, Pasanen M, Rysä J. Placental ion channels: potential target of chemical exposure. Biol Reprod 2022; 108:41-51. [PMID: 36173899 PMCID: PMC9843680 DOI: 10.1093/biolre/ioac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2023] Open
Abstract
The placenta is an important organ for the exchange of substances between the fetus and the mother, hormone secretion, and fetoplacental immunological defense. Placenta has an organ-specific distribution of ion channels and trophoblasts, and placental vessels express a large number of ion channels. Several placental housekeeping activities and pregnancy complications are at least partly controlled by ion channels, which are playing an important role in regulating hormone secretion, trophoblastic homeostasis, ion transport, and vasomotor activity. The function of several placental ion channels (Na, Ca, and Cl ion channels, cation channel, nicotinic acetylcholine receptors, and aquaporin-1) is known to be influenced by chemical exposure, i.e., their responses to different chemicals have been tested and confirmed in experimental models. Here, we review the possibility that placental ion channels are targets of toxicological concern in terms of placental function, fetal growth, and development.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaana Rysä
- Correspondence: School of Pharmacy, University of Eastern Finland, POB 1627, Kuopio 70211, Finland. Tel: +358403552412; E-mail:
| |
Collapse
|
3
|
YAP1 nuclear efflux and transcriptional reprograming follow membrane diminution upon VSV-G-induced cell fusion. Nat Commun 2021; 12:4502. [PMID: 34301937 PMCID: PMC8302681 DOI: 10.1038/s41467-021-24708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.
Collapse
|
4
|
Naidu SAG, Clemens RA, Pressman P, Zaigham M, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020; 19:78-114. [PMID: 33164606 DOI: 10.1080/19390211.2020.1834047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As the COVID-19 pandemic intensified the global health crisis, the containment of SARS-CoV-2 infection in pregnancies, and the inherent risk of vertical transmission of virus from mother-to-fetus (or neonate) poses a major concern. Most COVID-19-Pregnancy patients showed mild to moderate COVID-19 pneumonia with no pregnancy loss and no congenital transmission of the virus; however, an increase in hypoxia-induced preterm deliveries was apparent. Also, the breastmilk of several mothers with COVID-19 tested negative for the virus. Taken together, the natural barrier function during pregnancy and postpartum seems to deter the SARS-CoV-2 transmission from mother-to-child. This clinical observation warrants to explore the maternal-fetal interface and identify the innate defense factors for prevention and control of COVID-19-Pregnancy. Lactoferrin (LF) is a potent antiviral iron-binding protein present in the maternal-fetal interface. In concert with immune co-factors, maternal-LF modulates chemokine release and lymphocyte migration and amplify host defense during pregnancy. LF levels during pregnancy may resolve hypertension via down-regulation of ACE2; consequently, may limit the membrane receptor access to SARS-CoV-2 for cellular entry. Furthermore, an LF-derived peptide (LRPVAA) has been shown to block ACE receptor activity in vitro. LF may also reduce viral docking and entry into host cells and limit the early phase of COVID-19 infection. An in-depth understanding of LF and other soluble mammalian milk-derived innate antiviral factors may provide insights to reduce co-morbidities and vertical transmission of SARS-CoV-2 infection and may lead to the development of effective nutraceutical supplements.
Collapse
Affiliation(s)
| | - Roger A Clemens
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | - Mehreen Zaigham
- Department of Obstetrics & Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, USA.,Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, USA.,Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
5
|
Kretschmer T, Turnwald EM, Janoschek R, Zentis P, Bae-Gartz I, Beers T, Handwerk M, Wohlfarth M, Ghilav M, Bloch W, Hucklenbruch-Rother E, Dötsch J, Appel S. Maternal high fat diet-induced obesity affects trophoblast differentiation and placental function in mice†. Biol Reprod 2020; 103:1260-1274. [PMID: 32915209 DOI: 10.1093/biolre/ioaa166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that maternal obesity (MO) can aggravate placental function causing severe pathologies during the perinatal window. However, molecular changes and mechanisms of placental dysfunction remain largely unknown. This work aimed to decipher structural and molecular alterations of the placental transfer zone associated with MO. To this end, mice were fed a high fat diet (HFD) to induce obesity before mating, and pregnant dams were sacrificed at E15.5 to receive placentas for molecular, histological, and ultrastructural analysis and to assess unidirectional materno-fetal transfer capacity. Laser-capture microdissection was used to collect specifically placental cells of the labyrinth zone for proteomics profiling. Using BeWo cells, fatty acid-mediated mechanisms of adherens junction stability, cell layer permeability, and lipid accumulation were deciphered. Proteomics profiling revealed downregulation of cell adhesion markers in the labyrinth zone of obese dams, and disturbed syncytial fusion and detachment of the basement membrane (BM) within this zone was observed, next to an increase in materno-fetal transfer in vivo across the placenta. We found that fetuses of obese dams develop a growth restriction and in those placentas, labyrinth zone volume-fraction was significantly reduced. Linoleic acid was shown to mediate beta-catenin level and increase cell layer permeability in vitro. Thus, MO causes fetal growth restriction, molecular and structural changes in the transfer zone leading to impaired trophoblast differentiation, BM disruption, and placental dysfunction despite increased materno-fetal transfer capacity. These adverse effects are probably mediated by fatty acids found in HFD demonstrating the need for obesity treatment to mitigate placental dysfunction and prevent offspring pathologies.
Collapse
Affiliation(s)
- Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva-Maria Turnwald
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Core Facility Imaging, University of Cologne, Cologne, Germany
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tim Beers
- Department of Anatomy I, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marion Handwerk
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria Wohlfarth
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mojgan Ghilav
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Cha HH, Hwang JR, Sung JH, Choi SJ, Oh SY, Roh CR. Changes in calcium channel proteins according to magnesium sulfate administration in placentas from pregnancies with pre-eclampsia or fetal growth restriction. J Investig Med 2018; 67:319-326. [PMID: 30415221 PMCID: PMC6581081 DOI: 10.1136/jim-2018-000844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 11/06/2022]
Abstract
We aimed to evaluate the changes in plasma membrane Ca2+-ATPase (PMCA) and sarcoendoplasmic reticulum CA2+-ATPase (SERCA-2) according to the antepartal magnesium sulfate (MgSO4) administration in the placentas from pregnancies with pre-eclampsia (PE) or fetal growth restriction (FGR). Pregnant women were classified as follows: (group 1) pregnancies without PE or FGR (n=16), (group 2) pregnancies with PE or FGR but without MgSO4 administration (n=14), and (group 3) pregnancies with PE or FGR and with MgSO4 administration (n=28). We observed the localization of PMCA and SERCA-2 in placentas and compared its expression among 3 groups. And we observed its expression in BeWo cells following treatment with MgSO4 and CoCl2. PMCA staining was more observed in the basal membrane, whereas SERCA-2 staining was observed predominantly under the microvillous membrane. SERCA-2 expression was significantly increased in group 3 compared with that in group 1. Considering the gestational age at delivery, PMCA expression was increased in group 2 and group 3 compared with that in group 1 after 36 weeks of gestation. SERCA-2 was increased in group 3, but not in group 2 compared with that in group 1 after 36 weeks of gestation. In BeWo cells, MgSO4 treatment increased PMCA and SERCA-2 expression. PMCA expression was influenced by gestational age at delivery, and SERCA-2 expression was increased in the presence of PE and antepartal MgSO4 administration. This indicates that antepartal MgSO4 administration has a greater influence on SERCA-2 than PMCA.
Collapse
Affiliation(s)
- Hyun-Hwa Cha
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Ryoung Hwang
- Sungkynkwan University School of Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Ji Hee Sung
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheong-Rae Roh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Zhang Y, Xu B, Yao M, Dong T, Mao Z, Hang B, Han X, Lin Z, Bian Q, Li M, Xia Y. Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells. Chem Biol Interact 2018; 296:124-133. [PMID: 30273564 DOI: 10.1016/j.cbi.2018.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) exist in many nano-products and concerns have been raised about their potential toxicity on human beings. One such issue is their potential effects on placental function, and the studies on this topic are limited and the mechanism remains unclear. Here we employed human trophoblast HTR-8/SVneo cells to investigate the effects of TiO2 NPs on trophoblast. Results showed that TiO2 NPs could enter cells and were mostly distributed in lysosomes, with some in the cytoplasm. TiO2 NPs and protein aggregation were found in both fetal bovine serum (FBS) in culture medium and cytoplasm of HTR-8/SVneo cells. In consistence with that, proteostasis of HTR-8/SVneo cells was significantly disrupted and endoplasmic reticulum (ER) stress related markers including PERK, IRE1-α were increased. After high speed centrifugation, the proteins PERK and IRE1-α were dramatically decreased in the highest TiO2 NPs treatment group, which indicated interactions between TiO2 NPs and these two proteins. Meanwhile, the protein expressions of LC3-II/LC3-I and P62, the autophagy biomarkers, were increased and the autophagy flux was not blocked. Cellular ROS stress increased and mitophagy related genes including PINK and Parkin increased along with the increased co-localization of LC3 and mitochondria. Taken together, these results indicated that TiO2 NPs interacted with intracellular proteins and activated ER stress and mitophagy in HTR-8/SVneo cells, which might do damage to placental function.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengmeng Yao
- Healthcare Management, International Business Center of Nanjing University, Nanjing, 211166, China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhilei Mao
- The Affiliated Changzhou Maternity and Child Health Care Hospital, Nanjing Medical University, Changzhou, 213003, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qian Bian
- Department of Toxicology and Function Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Min Li
- Department of Anatomy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
Differences in permeability of preterm and term fetal membranes to calcium ions - Preliminary report. Placenta 2016; 39:84-6. [PMID: 26992679 DOI: 10.1016/j.placenta.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022]
Abstract
The metabolic activity of amniochorion contributes to the control of activation of labor-type uterine contractions. The study presents an experimental model of transport of calcium ions across the human amniochorion sampled directly after cesarean section in patients delivering both at term and prematurely. Transmembrane transport of calcium ions was lower in preterm vs. term tissue samples. The differences in permeability were most pronounced in the first 60 min of experiments. The results of the study provide evidence for the existence of an active mechanism of calcium transport which can contribute to regulating the contractility of the uterus.
Collapse
|
9
|
Robajac D, Masnikosa R, Vanhooren V, Libert C, Miković Ž, Nedić O. The N-glycan profile of placental membrane glycoproteins alters during gestation and aging. Mech Ageing Dev 2014; 138:1-9. [DOI: 10.1016/j.mad.2014.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/27/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022]
|
10
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
11
|
Sai T, Uchida K, Nakayama H. Changes of MAO-A and MAO-B Expressions in the Placenta of MPTP or MPP(+) Treated Mice. J Toxicol Pathol 2013; 26:73-7. [PMID: 23723572 PMCID: PMC3620218 DOI: 10.1293/tox.26.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 12/10/2012] [Indexed: 02/04/2023] Open
Abstract
In the present study, we evaluated the influence of intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+) on the placenta. There was no increase in apoptotic cells in the placentas of C57BL/6 mice treated with 25.0 mg/kg MPTP or 17.1 mg/kg MPP+, indicating that a single injection of the chemicals may induce very slight cytotoxicity in the placenta at 12 hr after administration. The decrease in the expression of monoamine oxidase (MAO)-A in the labyrinth zone and that of MAO-B in the basal zone may be due to the decrease in cell activity, whereas the increase of MAO-B expression in the labyrinth zone after MPTP treatment may be due to a responsive reaction caused by MPTP, one of the substrates of MAO-B. The results represent histological evidence that MAO-B may be involved in the metabolism of MPTP to MPP+ in the labyrinth zone of the mouse placenta. In the present study, no increase in apoptotic cells indicates that MPTP and MPP+ are hardly toxic to the placenta, and the histological change in MAO-B expression may indicate the possibility of involvement of placental MAO-B in MPTP metabolism.
Collapse
Affiliation(s)
- Takafumi Sai
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan ; Pathology Group, Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura-shi, Kanagawa 248-8555, Japan
| | | | | |
Collapse
|
12
|
Gaohua L, Abduljalil K, Jamei M, Johnson TN, Rostami-Hodjegan A. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol 2013; 74:873-85. [PMID: 22725721 DOI: 10.1111/j.1365-2125.2012.04363.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIMS Pregnant women are usually not part of the traditional drug development programme. Pregnancy is associated with major biological and physiological changes that alter the pharmacokinetics (PK) of drugs. Prediction of the changes to drug exposure in this group of patients may help to prevent under- or overtreatment. We have used a pregnancy physiologically based pharmacokinetic (p-PBPK) model to assess the likely impact of pregnancy on three model compounds, namely caffeine, metoprolol and midazolam, based on the knowledge of their disposition in nonpregnant women and information from in vitro studies. METHODS A perfusion-limited form of a 13-compartment full-PBPK model (Simcyp® Simulator) was used for the nonpregnant women, and this was extended to the pregnant state by applying known changes to all model components (including the gestational related activity of specific cytochrome P450 enzymes) and through the addition of an extra compartment to represent the fetoplacental unit. The uterus and the mammary glands were grouped into the muscle compartment. The model was implemented in Matlab Simulink and validated using clinical observations. RESULTS The p-PBPK model predicted the PK changes of three model compounds (namely caffeine, metoprolol and midazolam) for CYP1A2, CYP2D6 and CYP3A4 during pregnancy within twofold of observed values. The changes during the third trimester were predicted to be a 100% increase, a 30% decrease and a 35% decrease in the exposure of caffeine, metoprolol and midazolam, respectively, compared with the nonpregnant women. CONCLUSIONS In the absence of clinical data, the in silico prediction of PK behaviour during pregnancy can provide a valuable aid to dose adjustment in pregnant women. The performance of the model for drugs metabolized by a single enzyme to different degrees (high and low extraction) and for drugs that are eliminated by several different routes warrants further study.
Collapse
|
13
|
The migratory capacity of human trophoblastic BeWo cells: effects of aldosterone and the epithelial sodium channel. J Membr Biol 2013; 246:243-55. [PMID: 23354843 DOI: 10.1007/s00232-013-9526-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 01/08/2013] [Indexed: 01/08/2023]
Abstract
Aldosterone is a key regulator of the epithelial sodium channel (ENaC) and stimulates protein methylation on the β-subunit of the ENaC. We found that aldosterone (100 nM) promotes cellular migration in a wound-healing model in trophoblastic BeWo cells. Here, we tested if the positive influence of aldosterone on wound healing is related to methylation reactions. Cell migration and proliferation were measured in BeWo cells at 6 h, when mitosis is still scarce. Cell migration covered 12.4, 25.3, 19.6 and 45.1 % of the wound when cultivated under control, aldosterone (12 h), 8Br-cAMP and aldosterone plus 8Br-cAMP, respectively. Amiloride blocked the effects of aldosterone alone or in the presence of 8Br-cAMP on wound healing. Wound healing decreased in aldosterone (plus 8Br-cAMP) coexposed with the methylation inhibitor 3-deaza-adenosine (3-DZA, 12.9 % reinvasion of the wound). There was an increase in wound healing in aldosterone-, 8Br-cAMP- and 3-DZA-treated cells in the presence of AdoMet, a methyl donor, compared to cells in the absence of AdoMet (27.3 and 12.9 % reinvasion of the wound, respectively). Cell proliferation assessed with the reagent MTT was not changed in any of these treatments, suggesting that cellular migration is the main factor for reinvasion of wound healing. Electrophysiological studies showed an increase in ENaC current in the presence of aldosterone. This effect was higher with 8Br-cAMP, and there was a decrease when 3-DZA was present. AdoMet treatment partially reversed this phenomenon. We suggest that aldosterone positively influences wound healing in BeWo cells, at least in part through methylation of the ENaC.
Collapse
|
14
|
Riquelme G, de Gregorio N, Vallejos C, Berrios M, Morales B. Differential expression of potassium channels in placentas from normal and pathological pregnancies: targeting of the K(ir) 2.1 channel to lipid rafts. J Membr Biol 2012; 245:141-50. [PMID: 22391579 DOI: 10.1007/s00232-012-9422-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Potassium channels play important physiological roles in human syncytiotrophoblasts (hSTBs) from placenta, an epithelium responsible for maternal-fetal exchange. Basal and apical plasma membranes differ in their lipid and protein composition, and the latter contains cholesterol-enriched microdomains. In placental tissue, the specific localization of potassium channels is unknown. Previously, we described two isolated subdomains from the apical membrane (MVM and LMVM) and their respective microdomains (lipid rafts). Here, we report on the distribution of K(ir)2.1, K(v)2.1, TASK-1, and TREK-1 in hSTB membranes and the lipid rafts that segregate them. Immunoblotting experiments showed that these channels are present mainly in the apical membrane from healthy hSTBs. Apical expression versus basal membrane was 84 and 16% for K(ir)2.1 and K(v)2.1, 60 and 30% for TREK-1, and 74 and 26% for TASK-1. Interestingly, K(v)2.1 showed differences between apical membrane subdomains: 26 ± 8% was located in the LMVM and 59 ± 9% in MVM. In pathological placentas, the expression distribution changed in the basal membrane: preeclampsia shifted to 50% and intrauterine growth restriction to 42% for TASK-1 and both pathologies increased to 25% for K(ir)2.1 and K(v)2.1, K(ir)2.1 appeared to be associated with rafts that were sensitive to cholesterol depletion in healthy, but not in pathological, placentas. K(v)2.1 and TREK-1 emerged in the nonraft fractions. The precise membrane localization of ion channels in hSTB membranes is necessary to understand the physiological events.
Collapse
Affiliation(s)
- Gloria Riquelme
- Departamento de Fisiología y Biofísica, Instituto de Ciencias Biomédicas-ICBM, Facultad de Medicina, Universidad de Chile, Casilla, 70005 Santiago 7, Chile.
| | | | | | | | | |
Collapse
|