1
|
Mendoza M, Ballesteros A, Rendon-Correa E, Tonk R, Warren J, Snow AL, Stowell SR, Blois SM, Dveksler G. Modulation of galectin-9 mediated responses in monocytes and T-cells by pregnancy-specific glycoprotein 1. J Biol Chem 2024; 300:107638. [PMID: 39121996 PMCID: PMC11403483 DOI: 10.1016/j.jbc.2024.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Successful pregnancy relies on a coordinated interplay between endocrine, immune, and metabolic processes to sustain fetal growth and development. The orchestration of these processes involves multiple signaling pathways driving cell proliferation, differentiation, angiogenesis, and immune regulation necessary for a healthy pregnancy. Among the molecules supporting placental development and maternal tolerance, the families of pregnancy-specific glycoproteins and galectins are of great interest in reproductive biology. We previously found that PSG1 can bind to galectin-1 (GAL-1). Herein, we characterized the interaction between PSG1 and other members of the galectin family expressed during pregnancy, including galectin-3, -7, -9, and -13 (GAL-3, GAL-7, GAL-9, and GAL-13). We observed that PSG1 binds to GAL-1, -3, and -9, with the highest apparent affinity seen for GAL-9, and that the interaction of PSG1 with GAL-9 is carbohydrate-dependent. We further investigated the ability of PSG1 to regulate GAL-9 responses in human monocytes, a murine macrophage cell line, and T-cells, and determined whether PSG1 binds to both carbohydrate recognition domains of GAL-9. Additionally, we compared the apparent affinity of GAL-9 binding to PSG1 with other known GAL-9 ligands in these cells, Tim-3 and CD44. Lastly, we explored functional conservation between murine and human PSGs by determining that Psg23, a highly expressed member of the murine Psg family, can bind some murine galectins despite differences in amino acid composition and domain structure.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Angela Ballesteros
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Rendon-Correa
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rohan Tonk
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Boston Massachusetts, USA
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Glyco-HAM, a cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Zambuto SG, Rattila S, Dveksler G, Harley BAC. Effects of Pregnancy-Specific Glycoproteins on Trophoblast Motility in Three-Dimensional Gelatin Hydrogels. Cell Mol Bioeng 2022; 15:175-191. [PMID: 35401843 PMCID: PMC8938592 DOI: 10.1007/s12195-021-00715-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023] Open
Abstract
Introduction Trophoblast invasion is a complex biological process necessary for establishment of pregnancy; however, much remains unknown regarding what signaling factors coordinate the extent of invasion. Pregnancy-specific glycoproteins (PSGs) are some of the most abundant circulating trophoblastic proteins in maternal blood during human pregnancy, with maternal serum concentrations rising to as high as 200-400 μg/mL at term. Methods Here, we employ three-dimensional (3D) trophoblast motility assays consisting of trophoblast spheroids encapsulated in 3D gelatin hydrogels to quantify trophoblast outgrowth area, viability, and cytotoxicity in the presence of PSG1 and PSG9 as well as epidermal growth factor and Nodal. Results We show PSG9 reduces trophoblast motility whereas PSG1 increases motility. Further, we assess bulk nascent protein production by encapsulated spheroids to highlight the potential of this approach to assess trophoblast response (motility, remodeling) to soluble factors and extracellular matrix cues. Conclusions Such models provide an important platform to develop a deeper understanding of early pregnancy.
Collapse
Affiliation(s)
- Samantha G. Zambuto
- grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Shemona Rattila
- grid.265436.00000 0001 0421 5525Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814 USA
| | - Gabriela Dveksler
- grid.265436.00000 0001 0421 5525Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814 USA
| | - Brendan A. C. Harley
- grid.35403.310000 0004 1936 9991Department Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
3
|
Rattila S, Kleefeldt F, Ballesteros A, Beltrame JS, L Ribeiro M, Ergün S, Dveksler G. Pro-angiogenic effects of pregnancy-specific glycoproteins in endothelial and extravillous trophoblast cells. Reproduction 2021; 160:737-750. [PMID: 33065549 DOI: 10.1530/rep-20-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
We previously reported that binding to heparan sulfate (HS) is required for the ability of the placentally secreted pregnancy-specific glycoprotein 1 (PSG1) to induce endothelial tubulogenesis. PSG1 is composed of four immunoglobulin-like domains but which domains of the protein bind to HS remains unknown. To analyze the interaction of PSG1 with HS, we generated several recombinant proteins, including the individual domains, chimeric proteins between two PSG1 domains, and mutants. Using flow cytometric and surface plasmon resonance studies, we determined that the B2 domain of PSG1 binds to HS and that the positively charged amino acids encompassed between amino acids 43-59 are required for this interaction. Furthermore, we showed that the B2 domain of PSG1 is required for the increase in the formation of tubes by endothelial cells (EC) including a human endometrial EC line and two extravillous trophoblast (EVT) cell lines and for the pro-angiogenic activity of PSG1 observed in an aortic ring assay. PSG1 enhanced the migration of ECs while it increased the expression of matrix metalloproteinase-2 in EVTs, indicating that the pro-angiogenic effect of PSG1 on these two cell types may be mediated by different mechanisms. Despite differences in amino acid sequence, we observed that all human PSGs bound to HS proteoglycans and confirmed that at least two other members of the family, PSG6 and PSG9, induce tube formation. These findings contribute to a better understanding of the pro-angiogenic activity of human PSGs and strongly suggest conservation of this function among all PSG family members.
Collapse
Affiliation(s)
- Shemona Rattila
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jimena S Beltrame
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Maria L Ribeiro
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Zimmermann W, Kammerer R. The immune-modulating pregnancy-specific glycoproteins evolve rapidly and their presence correlates with hemochorial placentation in primates. BMC Genomics 2021; 22:128. [PMID: 33602137 PMCID: PMC7893922 DOI: 10.1186/s12864-021-07413-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Pregnancy-specific glycoprotein (PSG) genes belong to the carcinoembryonic antigen (CEA) gene family, within the immunoglobulin gene superfamily. In humans, 10 PSG genes encode closely related secreted glycoproteins. They are exclusively expressed in fetal syncytiotrophoblast cells and represent the most abundant fetal proteins in the maternal blood. In recent years, a role in modulation of the maternal immune system possibly to avoid rejection of the semiallogeneic fetus and to facilitate access of trophoblast cells to maternal resources via the blood system has been suggested. Alternatively, they could serve as soluble pathogen decoy receptors like other members of the CEA family. Despite their clearly different domain organization, similar functional properties have also been observed for murine and bat PSG. As these species share a hemochorial type of placentation and a seemingly convergent formation of PSG genes during evolution, we hypothesized that hemochorial placentae support the evolution of PSG gene families. Results To strengthen this hypothesis, we have analyzed PSG genes in 57 primate species which exhibit hemochorial or epitheliochorial placentation. In nearly all analyzed apes some 10 PSG genes each could be retrieved from genomic databases, while 6 to 24 PSG genes were found in Old World monkey genomes. Surprisingly, only 1 to 7 PSG genes could be identified in New World monkeys. Interestingly, no PSG genes were found in more distantly related primates with epitheliochorial placentae like lemurs and lorises. The exons encoding the putative receptor-binding domains exhibit strong selection for diversification in most primate PSG as revealed by rapid loss of orthologous relationship during evolution and high ratios of nonsynonymous and synonymous mutations. Conclusion The distribution of trophoblast-specific PSGs in primates and their pattern of selection supports the hypothesis that PSG are still evolving to optimize fetal-maternal or putative pathogen interactions in mammals with intimate contact of fetal cells with the immune system of the mother like in hemochorial placentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07413-8.
Collapse
Affiliation(s)
- Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, Department of Urology, University Hospital, LMU Munich, Germany.
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| |
Collapse
|
5
|
Interaction of Pregnancy-Specific Glycoprotein 1 With Integrin Α5β1 Is a Modulator of Extravillous Trophoblast Functions. Cells 2019; 8:cells8111369. [PMID: 31683744 PMCID: PMC6912793 DOI: 10.3390/cells8111369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
Human pregnancy-specific glycoproteins (PSGs) serve immunomodulatory and pro-angiogenic functions during pregnancy and are mainly expressed by syncytiotrophoblast cells. While PSG mRNA expression in extravillous trophoblasts (EVTs) was reported, the proteins were not previously detected. By immunohistochemistry and immunoblotting, we show that PSGs are expressed by invasive EVTs and co-localize with integrin 5. In addition, we determined that native and recombinant PSG1, the most highly expressed member of the family, binds to 51 and induces the formation of focal adhesion structures resulting in adhesion of primary EVTs and EVT-like cell lines under 21% oxygen and 1% oxygen conditions. Furthermore, we found that PSG1 can simultaneously bind to heparan sulfate in the extracellular matrix and to 51 on the cell membrane. Wound healing assays and single-cell movement tracking showed that immobilized PSG1 enhances EVT migration. Although PSG1 did not affect EVT invasion in the in vitro assays employed, we found that the serum PSG1 concentration is lower in African-American women diagnosed with early-onset and late-onset preeclampsia, a pregnancy pathology characterized by shallow trophoblast invasion, than in their respective healthy controls only when the fetus was a male; therefore, the reduced expression of this molecule should be considered in the context of preeclampsia as a potential therapy.
Collapse
|
6
|
Warren J, Im M, Ballesteros A, Ha C, Moore T, Lambert F, Lucas S, Hinz B, Dveksler G. Activation of latent transforming growth factor-β1, a conserved function for pregnancy-specific beta 1-glycoproteins. Mol Hum Reprod 2019; 24:602-612. [PMID: 30371828 DOI: 10.1093/molehr/gay044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Do all 10 human pregnancy-specific beta 1-glycoproteins (PSGs) and murine PSG23 activate latent transforming growth factor-β1 (TGF-β1)? SUMMARY ANSWER All human PSGs and murine PSG23 activated latent TGF-β1. WHAT IS KNOWN ALREADY Two of the 10 members of the PSG1 family, PSG1 and PSG9, were previously shown to activate the soluble small latent complex of TGF-β1, a cytokine with potent immune suppressive functions. STUDY DESIGN, SIZE, DURATION Recombinant PSGs were generated and tested for their ability to activate the small latent complex of TGF-β1 in a cell-free ELISA-based assay and in a bioassay. In addition, we tested the ability of PSG1 and PSG4 to activate latent TGF-β bound to the extracellular matrix (ECM) or on the membranes of the Jurkat human T-cell line. PARTICIPANTS/MATERIALS, SETTING, METHODS Recombinant PSGs were generated by transient transfection and purified with a His-Trap column followed by gel filtration chromatography. The purified PSGs were compared to vehicle (PBS) used as control for their ability to activate the small latent complex of TGF-β1. The concentration of active TGF-β was measured in an ELISA using the TGF-β receptor II as capture and a bioassay using transformed mink epithelial cells that express luciferase in response to active TGF-β. The specificity of the signal was confirmed using a TGF-β receptor inhibitor. We also measured the binding kinetics of some human PSGs for the latent-associated peptide (LAP) of TGF-β using surface plasmon resonance and determined whether PSG1 and PSG4 could activate the large latent complex of TGF-β1 bound to the ECM and latent TGF-β1 bound to the cell membrane. All experiments were performed in triplicate wells and repeated three times. MAIN RESULTS AND THE ROLE OF CHANCE All human PSGs activated the small latent complex of TGF-β1 (P < 0.05 vs. control) and showed similar affinities (KD) for LAP. Despite the lack of sequence conservation with its human counterparts, the ability to activate latent TGF-β1 was shared by a member of the murine PSG family. We found that PSG1 and PSG4 activated the latent TGF-β stored in the ECM (P < 0.01) but did not activate latent TGF-β1 bound to glycoprotein A repetitions predominant (GARP) on the surface of Jurkat T cells. LIMITATIONS, REASONS FOR CAUTION The affinity of the interaction of LAP and PSGs was calculated using recombinant proteins, which may differ from the native proteins in their post-translational modifications. We also utilized a truncated form of murine PSG23 rather than the full-length protein. For the studies testing the ability of PSGs to activate membrane-bound TGF-β1, we utilized the T-cell line Jurkat and Jurkat cells expressing GARP rather than primary T regulatory cells. All the studies were performed in vitro. WIDER IMPLICATIONS OF THE FINDINGS Here, we show that all human PSGs activate TGF-β1 and that this function is conserved in at least one member of the rodent PSG family. In vivo PSGs could potentially increase the availability of active TGF-β1 from the soluble and matrix-bound latent forms of the cytokine contributing to the establishment of a tolerogenic environment during pregnancy. LARGE-SCALE DATA None. STUDY FUNDING/COMPETING INTEREST(S) The research was supported by a grant from the Collaborative Health Initiative Research Program (CHIRP). No conflicts of interests are declared by the authors.
Collapse
Affiliation(s)
- James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michelle Im
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, 150 College St., FG234, ON, Canada
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute on Neurological Disorders and Stroke (NINDS-NIH), Bethesda, MD, USA
| | - Cam Ha
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, College Road, Cork, Ireland
| | - Fanny Lambert
- Institut de Duve, Université catholique de Louvain, Avenue Hippocrate 75 - B1.74.04, Brussels, Belgium
| | - Sophie Lucas
- Institut de Duve, Université catholique de Louvain, Avenue Hippocrate 75 - B1.74.04, Brussels, Belgium
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, 150 College St., FG234, ON, Canada
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
7
|
Kammerer R, Herse F, Zimmermann W. Convergent Evolution Within CEA Gene Families in Mammals: Hints for Species-Specific Selection Pressures. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ballesteros A, Mentink-Kane MM, Warren J, Kaplan GG, Dveksler GS. Induction and activation of latent transforming growth factor-β1 are carried out by two distinct domains of pregnancy-specific glycoprotein 1 (PSG1). J Biol Chem 2014; 290:4422-31. [PMID: 25548275 DOI: 10.1074/jbc.m114.597518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Pregnancy-specific glycoproteins (PSGs) are a family of Ig-like proteins secreted by specialized placental cells. The PSG1 structure is composed of a single Ig variable region-like N-terminal domain and three Ig constant region-like domains termed A1, A2, and B2. Members of the human and murine PSG family have been shown to induce anti-inflammatory cytokines from monocytes and macrophages and to stimulate angiogenesis. We recently showed that recombinant forms of PSG1 (PSG1-Fc and PSG1-His) and PSG1 purified from the serum of pregnant women are associated with the immunoregulatory cytokine TGF-β1 and activated latent TGF-β1. Here, we sought to examine the requirement of specific PSG1 domains in the activation of latent TGF-β1. Plasmon surface resonance studies showed that PSG1 directly bound to the small latent complex and to the latency-associated peptide of TGF-β1 and that this binding was mediated through the B2 domain. Furthermore, the B2 domain alone was sufficient for activating the small latent complex. In separate experiments, we found that the PSG1-mediated induction of TGF-β1 secretion in macrophages was dependent on the N-terminal domain. Mutagenesis analysis revealed that four amino acids (LYHY) of the CC' loop of the N-terminal domain were required for induction of latent TGF-β1 secretion. Together, our results show that two distinct domains of PSG1 are involved in the regulation of TGF-β1 and provide a mechanistic framework for how PSGs modulate the immunoregulatory environment at the maternal-fetal interface for successful pregnancy outcome.
Collapse
Affiliation(s)
- Angela Ballesteros
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892 and
| | - Margaret M Mentink-Kane
- the Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - James Warren
- the Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Gerardo G Kaplan
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892 and
| | - Gabriela S Dveksler
- the Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
9
|
Williams JM, Ball M, Ward A, Moore T. Psg22 expression in mouse trophoblast giant cells is associated with gene inversion and co-expression of antisense long non-coding RNAs. Reproduction 2014; 149:125-37. [PMID: 25359516 DOI: 10.1530/rep-14-0390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pregnancy-specific glycoproteins (PSGs) are secreted carcinoembryonic antigen (CEA)-related cell adhesion molecules-related members of the immunoglobulin superfamily and are encoded by multigene families in species with haemochorial placentation. PSGs may be the most abundant trophoblast-derived proteins in human maternal blood in late pregnancy and there is evidence that dysregulation of PSG expression is associated with gestational pathology. PSGs are produced by syncytiotrophoblast in the human placenta and by trophoblast giant cells (TGCs) and spongiotrophoblast in rodents, and are implicated in immune regulation, angiogenesis and regulation of platelet function. PSGs are encoded by 17 genes in the mouse and ten genes in the human. While functions appear to be conserved, the typical protein domain organisation differs between species. We analysed the evolution of the mouse Psg genomic locus structure and report inversion of the Psg22 gene within the locus. Psg22 is the most abundant Psg transcript detected in the first half of mouse pregnancy and we identified antisense long non-coding RNA (lncRNA) transcripts adjacent to Psg22 associated with an active local chromatin conformation. This suggests that an epigenetic regulatory mechanism may underpin high Psg22 expression relative to the other Psg gene family members in TGCs.
Collapse
Affiliation(s)
- John M Williams
- School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Melanie Ball
- School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Andrew Ward
- School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tom Moore
- School of Biochemistry and Cell BiologyUniversity College Cork, Western Gateway Building, Western Road, Cork, IrelandDepartment of Biology and BiochemistryUniversity of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
10
|
Zhou Y, Gormley MJ, Hunkapiller NM, Kapidzic M, Stolyarov Y, Feng V, Nishida M, Drake PM, Bianco K, Wang F, McMaster MT, Fisher SJ. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J Clin Invest 2013; 123:2862-72. [PMID: 23934129 PMCID: PMC3999620 DOI: 10.1172/jci66966] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/04/2013] [Indexed: 11/17/2022] Open
Abstract
During human pregnancy, a subset of placental cytotrophoblasts (CTBs) differentiates into cells that aggressively invade the uterus and its vasculature, anchoring the progeny and rerouting maternal blood to the placenta. In preeclampsia (PE), CTB invasion is limited, reducing placental perfusion and/or creating intermittent flow. This syndrome, affecting 4%-8% of pregnancies, entails maternal vascular alterations (e.g., high blood pressure, proteinuria, and edema) and, in some patients, fetal growth restriction. The only cure is removal of the faulty placenta, i.e., delivery. Previously, we showed that defective CTB differentiation contributes to the placental component of PE, but the causes were unknown. Here, we cultured CTBs isolated from PE and control placentas for 48 hours, enabling differentiation and invasion. In various severe forms of PE, transcriptomics revealed common aberrations in CTB gene expression immediately after isolation, including upregulation of SEMA3B, which resolved in culture. The addition of SEMA3B to normal CTBs inhibited invasion and recreated aspects of the PE phenotype. Additionally, SEMA3B downregulated VEGF signaling through the PI3K/AKT and GSK3 pathways, effects that were observed in PE CTBs. We propose that, in severe PE, the in vivo environment dysregulates CTB gene expression; the autocrine actions of the upregulated molecules (including SEMA3B) impair CTB differentiation, invasion and signaling; and patient-specific factors determine the signs.
Collapse
Affiliation(s)
- Yan Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Matthew J. Gormley
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Nathan M. Hunkapiller
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Mirhan Kapidzic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Yana Stolyarov
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Victoria Feng
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Masakazu Nishida
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Penelope M. Drake
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Katherine Bianco
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Fei Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Michael T. McMaster
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Susan J. Fisher
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| |
Collapse
|
11
|
Pregnancy-specific glycoproteins bind integrin αIIbβ3 and inhibit the platelet-fibrinogen interaction. PLoS One 2013; 8:e57491. [PMID: 23469002 PMCID: PMC3585349 DOI: 10.1371/journal.pone.0057491] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/22/2013] [Indexed: 01/10/2023] Open
Abstract
Pregnancy-specific glycoproteins (PSGs) are immunoglobulin superfamily members encoded by multigene families in rodents and primates. In human pregnancy, PSGs are secreted by the syncytiotrophoblast, a fetal tissue, and reach a concentration of up to 400 ug/ml in the maternal bloodstream at term. Human and mouse PSGs induce release of anti-inflammatory cytokines such as IL-10 and TGFβ1 from monocytes, macrophages, and other cell types, suggesting an immunoregulatory function. RGD tri-peptide motifs in the majority of human PSGs suggest that they may function like snake venom disintegrins, which bind integrins and inhibit interactions with ligands. We noted that human PSG1 has a KGD, rather than an RGD motif. The presence of a KGD in barbourin, a platelet integrin αIIbβ3 antagonist found in snake venom, suggested that PSG1 may be a selective αIIbβ3 ligand. Here we show that human PSG1 binds αIIbβ3 and inhibits the platelet – fibrinogen interaction. Unexpectedly, however, the KGD is not critical as multiple PSG1 domains independently bind and inhibit αIIbβ3 function. Human PSG9 and mouse Psg23 are also inhibitory suggesting conservation of this function across primate and rodent PSG families. Our results suggest that in species with haemochorial placentation, in which maternal blood is in direct contact with fetal trophoblast, the high expression level of PSGs reflects a requirement to antagonise abundant (3 mg/ml) fibrinogen in the maternal circulation, which may be necessary to prevent platelet aggregation and thrombosis in the prothrombotic maternal environment of pregnancy.
Collapse
|
12
|
Martinez FF, Cervi L, Knubel CP, Panzetta-Dutari GM, Motran CC. The Role of Pregnancy-Specific Glycoprotein 1a (PSG1a) in Regulating the Innate and Adaptive Immune Response. Am J Reprod Immunol 2013; 69:383-94. [DOI: 10.1111/aji.12089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Fernando F. Martinez
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| | - Carolina P. Knubel
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| | - Graciela M. Panzetta-Dutari
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| | - Claudia C. Motran
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| |
Collapse
|
13
|
Blois SM, Tirado-González I, Wu J, Barrientos G, Johnson B, Warren J, Freitag N, Klapp BF, Irmak S, Ergun S, Dveskler GS. Early expression of pregnancy-specific glycoprotein 22 (PSG22) by trophoblast cells modulates angiogenesis in mice. Biol Reprod 2012; 86:191. [PMID: 22423048 DOI: 10.1095/biolreprod.111.098251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse and human pregnancy-specific glycoproteins (PSG) are known to exert immunomodulatory functions during pregnancy by inducing maternal leukocytes to secrete anti-inflammatory cytokines that promote a tolerogenic decidual microenvironment. Many such anti-inflammatory mediators also function as proangiogenic factors, which, along with the reported association of murine PSG with the uterine vasculature, suggest that PSG may contribute to the vascular adaptations necessary for successful implantation and placental development. We observed that PSG22 is strongly expressed around the embryonic crypt on Gestation Day 5.5, indicating that trophoblast giant cells are the main source of PSG22 during the early stages of pregnancy. PSG22 treatment up-regulated the secretion of transforming growth factor beta 1 and vascular endothelial growth factor A (VEGFA) in murine macrophages, uterine dendritic cells, and natural killer cells. A possible role of PSGs in uteroplacental angiogenesis is further supported by the finding that incubation of endothelial cells with PSG22 resulted in the formation of tubes in the presence and absence of VEGFA. We determined that PSG22, like human PSG1 and murine PSG17 and PSG23, binds to the heparan sulfate chains in syndecans. Therefore, our findings indicate that despite the independent evolution and expansion of human and rodent PSG, members in both families have conserved functions that include their ability to induce anti-inflammatory cytokines and proangiogenic factors as well as to induce the formation of capillary structures by endothelial cells. In summary, our results indicate that PSG22, the most abundant PSG expressed during mouse early pregnancy, is likely a major contributor to the establishment of a successful pregnancy.
Collapse
Affiliation(s)
- Sandra M Blois
- Charité Centrum 12 für Innere Medizin und Dermatologie, Reproductive Medicine Research Group, University Medicine of Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|