1
|
Song G, Zhang D, Zhu J, Wang A, Zhou X, Han TL, Zhang H. The metabolic role of the CD73/adenosine signaling pathway in HTR-8/SVneo cells: A Double-Edged Sword? Heliyon 2024; 10:e25252. [PMID: 38322906 PMCID: PMC10845923 DOI: 10.1016/j.heliyon.2024.e25252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
The ecto-5'-nucleotidase (CD73)/adenosine signaling pathway has been reported to regulate tumor epithelial-mesenchymal transition (EMT), migration and proliferation. However, little is known about the metabolic mechanisms underlying its role in trophoblast proliferation and migration. In this study, we aimed to investigate the metabolic role of the CD73/adenosine signaling pathway on the proliferation and migration of trophoblast. We found that CD73 levels were upregulated in preeclamptic placentas compared with the placentas of normotensive pregnant women. EMT and migration of HTR-8/SVneo cells were enhanced when treated with a CD73 inhibitor (100 μM) in vitro. Conversely, excessive adenosine (25 or 50 μM) suppressed trophoblast cell EMT, migration and proliferation. RNA-seq, metabolomics and seahorse findings showed that adenosine treatment resulted in increased expression of PDK1, suppression of aerobic respiration, glycolysis and amino acids synthesis, as well as increased utilization of short-chain fatty acids (SCFAs). Furthermore, the 13C-adenosine isotope tracking experiment demonstrated that adenosine served as a carbon source for the tricarboxylic acid (TCA) cycle. Our results reveal the role of adenosine in regulating trophoblast energy metabolism is like a double-edged sword - either inhibiting aerobic respiration or supplementing carbon sources into metabolic flux. CD73/adenosine signaling regulated trophoblast EMT, migration, and proliferation by modulating energy metabolism. This study indicates that CD73/adenosine signaling potentially plays a role in the occurrence of placenta-derived diseases, including preeclampsia.
Collapse
Affiliation(s)
- Guangmin Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Dan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Jianan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Andi Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Chongqing, 400010, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
2
|
He J, Antonyan L, Zhu H, Ardila K, Li Q, Enoma D, Zhang W, Liu A, Chekouo T, Cao B, MacDonald ME, Arnold PD, Long Q. A statistical method for image-mediated association studies discovers genes and pathways associated with four brain disorders. Am J Hum Genet 2024; 111:48-69. [PMID: 38118447 PMCID: PMC10806749 DOI: 10.1016/j.ajhg.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023] Open
Abstract
Brain imaging and genomics are critical tools enabling characterization of the genetic basis of brain disorders. However, imaging large cohorts is expensive and may be unavailable for legacy datasets used for genome-wide association studies (GWASs). Using an integrated feature selection/aggregation model, we developed an image-mediated association study (IMAS), which utilizes borrowed imaging/genomics data to conduct association mapping in legacy GWAS cohorts. By leveraging the UK Biobank image-derived phenotypes (IDPs), the IMAS discovered genetic bases underlying four neuropsychiatric disorders and verified them by analyzing annotations, pathways, and expression quantitative trait loci (eQTLs). A cerebellar-mediated mechanism was identified to be common to the four disorders. Simulations show that, if the goal is identifying genetic risk, our IMAS is more powerful than a hypothetical protocol in which the imaging results were available in the GWAS dataset. This implies the feasibility of reanalyzing legacy GWAS datasets without conducting additional imaging, yielding cost savings for integrated analysis of genetics and imaging.
Collapse
Affiliation(s)
- Jingni He
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lilit Antonyan
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Harold Zhu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Karen Ardila
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Qing Li
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Enoma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andy Liu
- Sir Winston Churchill High School, Calgary, AB, Canada; College of Letters and Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thierry Chekouo
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB, Canada; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - M Ethan MacDonald
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul D Arnold
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Quan Long
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Iriyama T, Sayama S, Osuga Y. Role of adenosine signaling in preeclampsia. J Obstet Gynaecol Res 2021; 48:49-57. [PMID: 34657345 DOI: 10.1111/jog.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Placenta-specific molecular basis that is responsible for the pathophysiology of preeclampsia (PE) remains to be fully understood. Adenosine, an endogenous nucleoside, is a signaling molecule that is induced under pathological conditions such as hypoxia and is involved in various diseases. Recent evidence on humans and animal models has demonstrated that enhanced placental adenosine signaling contributes to the development of PE. This review is to summarize current progress and discuss the significance of adenosine signaling in the pathophysiology of PE and future perspectives of therapeutic possibilities targeting adenosine signaling.
Collapse
Affiliation(s)
- Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seisuke Sayama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Sagrillo-Fagundes L, Casagrande Paim T, Pretto L, Bertaco I, Zanatelli C, Vaillancourt C, Wink MR. The implications of the purinergic signaling throughout pregnancy. J Cell Physiol 2021; 237:507-522. [PMID: 34596240 DOI: 10.1002/jcp.30594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a necessary mechanism to trigger or even amplify cell communication. Its ligands, notably adenosine triphosphate (ATP) and adenosine, modulate specific membrane-bound receptors in virtually all human cells. Regardless of the stage of the pregnancy, cellular communication between maternal, placental, and fetal cells is the paramount mechanism to sustain its optimal status. In this review, we describe the crucial role of purinergic signaling on the regulation of the maternal-fetal trophic exchanges, immune control, and endocrine exchanges throughout pregnancy. The nature of the modulation of both ATP and adenosine on the embryo-maternal interface, going through placental invasion until birth delivery depends on the general maternal-fetal health state and consequently on the selective activation of their specific receptors. In addition, an increasing number of studies have been demonstrating the pivotal role of ATP and adenosine in modulating deleterious effects of suboptimal conditions of pregnancy. Here, we discuss the role of purinergic signaling on the balance that coordinates the embryo-maternal exchanges and a promising therapeutic venue in the context of pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thaís Casagrande Paim
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Pretto
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isadora Bertaco
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Zanatelli
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie, INRS, Laval, Quebec, Canada
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Tian Z, Dixon J, Guo X, Deal B, Liao Q, Zhou Y, Cheng F, Allen-Gipson DS. Co-inhibition of CD73 and ADORA2B Improves Long-Term Cigarette Smoke Induced Lung Injury. Front Physiol 2021; 12:614330. [PMID: 33584346 PMCID: PMC7876334 DOI: 10.3389/fphys.2021.614330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Adenosine (ADO) involvement in lung injury depends on the activation of its receptors. The ADO A2A receptor (ADORA2A) and A2B receptor (ADORA2B) are best described to have both tissue-protective and tissue-destructive processes. However, no approach has been effective in delineating the mechanism(s) involved with ADO shifting from its tissue-protective to tissue-destructive properties in chronic airway injury. Using cigarette smoke (CS) as our model of injury, we chronically exposed Nuli-1 cells to 5% CS extract (CSE) for 3 years establishing a long-term CSE exposure model (LTC). We found significant morphological changes, decreased proliferation, and migration resulting in impaired airway wound closure in LTC. Further investigations showed that long-term CSE exposure upregulates CD73 and ADORA2B expression, increases ADO production, inhibits PKC alpha activity and p-ERK signaling pathway. Knocking down ADORA2B and/or CD73 in LTC activates PKC alpha and increases p-ERK signaling. Knocking down both showed better improvement in wound repair than either alone. In vivo experiments also showed that double knockout CD73 and ADORA2B remarkably improved CS-induced lung injury by activating PKC alpha, reducing the inflammatory cell number in bronchoalveolar lavage fluid and the production of inflammatory mediator IL-6, inhibiting the fibrosis-like lesions and decreasing collagen deposition surrounding bronchioles. Collectively, long-term CSE exposure upregulates CD73 expression and increases ADO production, which promotes low affinity ADORA2B activation and subsequent diminution of PKC alpha activity and ERK signaling pathway, and inhibition of airway wound repair. Moreover, the data suggesting ADORA2B and CD73 as potential therapeutic targets may be more efficacious in improving chronic CS lung diseases and impaired wound repair.
Collapse
Affiliation(s)
- Zhi Tian
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Jendayi Dixon
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Benjamin Deal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Diane S Allen-Gipson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States.,Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Salsoso R, Mate A, Toledo F, Vázquez CM, Sobrevia L. Insulin requires A 2B adenosine receptors to modulate the L-arginine/nitric oxide signalling in the human fetoplacental vascular endothelium from late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165993. [PMID: 33096224 DOI: 10.1016/j.bbadis.2020.165993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Late-onset preeclampsia (LOPE) associates with reduced umbilical vein reactivity and endothelial nitric oxide synthase (eNOS) activity but increased human cationic amino acid (hCAT-1)-mediated L-arginine transport involving A2A adenosine receptor in the fetoplacental unit. This study addresses the A2B adenosine receptor (A2BAR)-mediated response to insulin in the fetoplacental vasculature from LOPE. Umbilical veins and HUVECs were obtained from women with normal (n = 37) or LOPE (n = 35) pregnancies. Umbilical vein rings reactivity to insulin was assayed in the absence or presence of adenosine and MRS-1754 (A2BAR antagonist) in a wire myograph. HUVECs were exposed to insulin, MRS-1754, BAY60-6583 (A2BAR agonist), NECA (general adenosine receptors agonist) or NG-nitro-L-arginine methyl ester (NOS inhibitor). A2BAR, hCAT-1, total and phosphorylated eNOS, Akt and p44/42mapk protein abundance were determined by Western blotting. Insulin receptors A (IR-A) and B (IR-B), eNOS and hCAT-1 mRNA were determined by qPCR. Firefly/Renilla luciferase assay was used to determine -1606 bp SLC7A1 (hCAT-1) promoter activity. L-Citrulline content was measured by HPLC, L-[3H]citrulline formation from L-[3H]arginine by the Citrulline assay, and intracellular cGMP by radioimmunoassay. LOPE-reduced dilation of vein rings to insulin was restored by MRS-1754. HUVECs from LOPE showed higher A2BAR, hCAT-1, and IR-A expression, Akt and p44/42mapk activation, and lower NOS activity. MRS-1754 reversed the LOPE effect on A2BAR, hCAT-1, Akt, and eNOS inhibitory phosphorylation. Insulin reversed the LOPE effect on A2BAR, IR-A and eNOS, but increased hCAT-1-mediated transport. Thus, LOPE alters endothelial function, causing an imbalance in the L-arginine/NO signalling pathway to reduce the umbilical vein dilation to insulin requiring A2BAR activation in HUVECs.
Collapse
Affiliation(s)
- Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, Herston, QLD, 4029, Australia.
| |
Collapse
|
7
|
Ye W, Sun J, Li C, Fan X, Gong F, Huang X, Deng M, Chu JQ. Adenosine A3 Receptor Mediates ERK1/2- and JNK-Dependent TNF-α Production in Toxoplasma gondii-Infected HTR8/SVneo Human Extravillous Trophoblast Cells. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:393-402. [PMID: 32871633 PMCID: PMC7462804 DOI: 10.3347/kjp.2020.58.4.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-α production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-α production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-α, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-α secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-α secretion in T. gondii-infected HTR8/SVneo cells.
Collapse
Affiliation(s)
- Wei Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jinhui Sun
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chunchao Li
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xuanyan Fan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Fan Gong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xinqia Huang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Mingzhu Deng
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jia-Qi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
8
|
Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, Hulin A, Siroux V, Vaiman D, Charles MA, Heude B, Forhan A, Schwartz J, Chuffart F, Bourova-Flin E, Khochbin S, Slama R, Lepeule J. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. ENVIRONMENT INTERNATIONAL 2018; 118:334-347. [PMID: 29935799 DOI: 10.1016/j.envint.2018.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Air pollution exposure represents a major health threat to the developing foetus. DNA methylation is one of the most well-known molecular determinants of the epigenetic status of cells. Blood DNA methylation has been proven sensitive to air pollutants, but the molecular impact of air pollution on new-borns has so far received little attention. OBJECTIVES We investigated whether nitrogen dioxide (NO2), particulate matter (PM10), temperature and humidity during pregnancy are associated with differences in placental DNA methylation levels. METHODS Whole-genome DNA-methylation was measured using the Illumina's Infinium HumanMethylation450 BeadChip in the placenta of 668 newborns from the EDEN cohort. We designed an original strategy using a priori biological information to focus on candidate genes with a specific expression pattern in placenta (active or silent) combined with an agnostic epigenome-wide association study (EWAS). We used robust linear regression to identify CpGs and differentially methylated regions (DMR) associated with each exposure during short- and long-term time-windows. RESULTS The candidate genes approach identified nine CpGs mapping to 9 genes associated with prenatal NO2 and PM10 exposure [false discovery rate (FDR) p < 0.05]. Among these, the methylation level of 2 CpGs located in ADORA2B remained significantly associated with NO2 exposure during the 2nd trimester and whole pregnancy in the EWAS (FDR p < 0.05). EWAS further revealed associations between the environmental exposures under study and variations of DNA methylation of 4 other CpGs. We further identified 27 DMRs significantly (FDR p < 0.05) associated with air pollutants exposure and 13 DMRs with meteorological conditions. CONCLUSIONS The methylation of ADORA2B, a gene whose expression was previously associated with hypoxia and pre-eclampsia, was consistently found here sensitive to atmospheric pollutants. In addition, air pollutants were associated to DMRs pointing towards genes previously implicated in preeclampsia, hypertensive and metabolic disorders. These findings demonstrate that air pollutants exposure at levels commonly experienced in the European population are associated with placental gene methylation and provide some mechanistic insight into some of the reported effects of air pollutants on preeclampsia.
Collapse
Affiliation(s)
- Emilie Abraham
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Lydiane Agier
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | | | | | - Valérie Siroux
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Marie-Aline Charles
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Barbara Heude
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Anne Forhan
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Saadi Khochbin
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Rémy Slama
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Johanna Lepeule
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France.
| |
Collapse
|
9
|
Gao ZG, Inoue A, Jacobson KA. On the G protein-coupling selectivity of the native A 2B adenosine receptor. Biochem Pharmacol 2018; 151:201-213. [PMID: 29225130 PMCID: PMC5899946 DOI: 10.1016/j.bcp.2017.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
A2B adenosine receptor (A2BAR) activation induces Gs-dependent cyclic AMP accumulation. However, A2BAR G protein-coupling to other signaling events, e.g. ERK1/2 and calcium, is not well documented. We explored Gi, Gq/11 and Gs coupling in 1321 N1 astrocytoma, HEK293, and T24 bladder cancer cells endogenously expressing human A2BAR, using NECA or nonnucleoside BAY60-6583 as agonist, selective Gi, Gs and Gq/11 blockers, and CRISPR/Cas9-based Gq- and Gs-null HEK293 cells. In HEK293 cells, A2BAR-mediated ERK1/2 activity occurred via both Gi and Gs, but not Gq/11. However, HEK293 cell calcium mobilization was completely blocked by Gq/11 inhibitor UBO-QIC and by Gq/11 knockout. In T24 cells, Gi was solely responsible for A2BAR-mediated ERK1/2 stimulation, and Gs suppressed ERK1/2 activity. A2BAR-mediated intracellular calcium mobilization in T24 cells was mainly via Gi, although Gs may also play a role, but Gq/11 is not involved. In 1321 N1 astrocytoma cells A2BAR activation suppressed rather than stimulated ERK1/2 activity. The ERK1/2 activity decrease was reversed by Gs downregulation using cholera toxin, but potentiated by Gi inhibitor pertussis toxin, and UBO-QIC had no effect. EPACs played an important role in A2BAR-mediated ERK1/2 signaling in all three cells. Thus, A2BAR may: couple to the same downstream pathway via different G proteins in different cell types; activate different downstream events via different G proteins in the same cell type; activate Gi and Gs, which have opposing or synergistic roles in different cell types/signaling pathways. The findings, relevant to drug discovery, address some reported controversial roles of A2BAR and could apply to signaling mechanisms in other GPCRs.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Na JY, Seok J, Park S, Kim JS, Kim GJ. Effects of selenium on the survival and invasion of trophoblasts. Clin Exp Reprod Med 2018; 45:10-16. [PMID: 29662820 PMCID: PMC5897242 DOI: 10.5653/cerm.2018.45.1.10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 01/29/2023] Open
Abstract
Objective Placental oxidative stress is known to be a factor that contributes to pregnancy failure. The aim of this study was to determine whether selenium could induce antioxidant gene expression and regulate invasive activity and mitochondrial activity in trophoblasts, which are a major cell type of the placenta. Methods To understand the effects of selenium on trophoblast cells exposed to hypoxia, the viability and invasive activity of trophoblasts were analyzed. The expression of antioxidant enzymes was assessed by reverse-transcription polymerase chain reaction. In addition, the effects of selenium treatment on mitochondrial activity were evaluated in terms of adenosine triphosphate production, mitochondrial membrane potential, and reactive oxygen species levels. Results Selenium showed positive effects on the viability and migration activity of trophoblast cells when exposed to hypoxia. Interestingly, the increased heme oxygenase 1 expression under hypoxic conditions was decreased by selenium treatment, whereas superoxide dismutase expression was increased in trophoblast cells by selenium treatment for 72 hours, regardless of hypoxia. Selenium-treated trophoblast cells showed increased mitochondrial membrane potential and decreased reactive oxygen species levels under hypoxic conditions for 72 hours. Conclusion These results will be used as basic data for understanding the mechanism of how trophoblast cells respond to oxidative stress and how selenium promotes the upregulation of related genes and improves the survival rate and invasive ability of trophoblasts through regulating mitochondrial activity. These results suggest that selenium may be used in reproductive medicine for purposes including infertility treatment.
Collapse
Affiliation(s)
- Jee Yoon Na
- Cheongshim International Academy, Gapyeong, Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | | | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
11
|
Salsoso R, Farías M, Gutiérrez J, Pardo F, Chiarello DI, Toledo F, Leiva A, Mate A, Vázquez CM, Sobrevia L. Adenosine and preeclampsia. Mol Aspects Med 2017; 55:126-139. [DOI: 10.1016/j.mam.2016.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023]
|
12
|
Prato M, Khadjavi A, Magnetto C, Gulino GR, Rolfo A, Todros T, Cavalli R, Guiot C. Effects of oxygen tension and dextran-shelled/2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets on secretion of gelatinases and their inhibitors in term human placenta. Biosci Biotechnol Biochem 2015; 80:466-72. [PMID: 26523859 DOI: 10.1080/09168451.2015.1095068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) need to be finely modulated in physiological processes. However, oxygen tension influences MMP/TIMP balances, potentially leading to pathology. Intriguingly, new 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNDs) have proven effective in abrogating hypoxia-dependent dysregulation of MMP and TIMP secretion by single cell populations. This work explored the effects of different oxygen tensions and dextran-shelled OLNDs on MMP/TIMP production in an organized and multicellular tissue (term human placenta). Chorionic villous explants from normal third-trimester pregnancies were incubated with/without OLNDs in 3 or 20% O2. Explants cultured at higher oxygen tension released constitutive proMMP-2, proMMP-9, TIMP-1, and TIMP-2. Hypoxia significantly altered MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios enhancing TIMP-2 and reducing proMMP-2, proMMP-9, and TIMP-1 levels. Intriguingly, OLNDs effectively counteracted the effects of low oxygen tension. Collectively, these data support OLND potential as innovative, nonconventional, and cost-effective tools to counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human tissues.
Collapse
Affiliation(s)
- Mauro Prato
- a Dipartimento di Neuroscienze , Università di Torino , Torino , Italy.,b Dipartimento di Scienze della Sanità Pubblica e Pediatriche , Università di Torino , Torino , Italy
| | - Amina Khadjavi
- a Dipartimento di Neuroscienze , Università di Torino , Torino , Italy
| | - Chiara Magnetto
- c Istituto Nazionale di Ricerca Metrologica (INRIM) , Torino , Italy
| | | | - Alessandro Rolfo
- e Dipartimento di Scienze Chirurgiche , Università di Torino , Torino , Italy
| | - Tullia Todros
- e Dipartimento di Scienze Chirurgiche , Università di Torino , Torino , Italy
| | - Roberta Cavalli
- f Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , Torino , Italy
| | - Caterina Guiot
- a Dipartimento di Neuroscienze , Università di Torino , Torino , Italy
| |
Collapse
|