1
|
Calis P, Vojtech L, Hladik F, Gravett MG. A review of ex vivo placental perfusion models: an underutilized but promising method to study maternal-fetal interactions. J Matern Fetal Neonatal Med 2022; 35:8823-8835. [PMID: 34818981 PMCID: PMC9126998 DOI: 10.1080/14767058.2021.2005565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Studying the placenta can provide information about the mechanistic pathways of pregnancy disease. However, analyzing placental tissues and manipulating placental function in real-time during pregnancy is not feasible. The ex vivo placental perfusion model allows observing important aspects of the physiology and pathology of the placenta, while maintaining its viability and functional integrity, and without causing harm to mother or fetus. In this review, we describe and compare setups for this technically complex model and summarize outcomes from various published studies. We hope that our review will encourage wider use of ex vivo placental perfusion, which in turn would generate more knowledge to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Pinar Calis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael G. Gravett
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
van Hove H, Mathiesen L, Freriksen J, Vähäkangas K, Colbers A, Brownbill P, Greupink R. Placental transfer and vascular effects of pharmaceutical drugs in the human placenta ex vivo: A review. Placenta 2022; 122:29-45. [DOI: 10.1016/j.placenta.2022.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
3
|
Flouri D, Darby JRT, Holman SL, Perumal SR, David AL, Morrison JL, Melbourne A. Magnetic resonance imaging of placentome development in the pregnant Ewe. Placenta 2021; 105:61-69. [PMID: 33549925 PMCID: PMC7611430 DOI: 10.1016/j.placenta.2021.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Novel imaging measurements of placental development are difficult to validate due to the invasive nature of gold-standard procedures. Animal studies have been important in validation of magnetic resonance imaging (MRI) measurements in invasive preclinical studies, as they allow for controlled experiments and analysis of multiple time-points during pregnancy. This study characterises the longitudinal diffusion and perfusion properties of sheep placentomes using MRI, measurements that are required for future validation studies. METHODS Pregnant ewes were anaesthetised for a MRI session on a 3T scanner. Placental MRI was used to classify placentomes morphologically into three types based on their shape and size at two gestational ages. To validate classification accuracy, placentome type derived from MRI data were compared with placentome categorisation results after delivery. Diffusion-Weighted MRI and T2-relaxometry were used to measure a broad range of biophysical properties of the placentomes. RESULTS MRI morphological classification results showed consistent gestational age changes in placentome shape, as supported by post-delivery gold standard data. The mean apparent diffusion coefficient was significantly higher at 110 days gestation than at late gestation (~140 days; term, 150 days). Mean T2 was higher at mid gestation (152.2 ± 58.1 ms) compared to late gestation (127.8 ms ± 52.0). Significantly higher perfusion fraction was measured in late gestation placentomes that also had a significantly higher fractional anisotropy when compared to the earlier gestational age. DISCUSSION We report baseline measurements of techniques common in placental MRI for the sheep placenta. These measurements are essential to support future validation measurements of placental MRI techniques.
Collapse
Affiliation(s)
- Dimitra Flouri
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sunthara R Perumal
- South Australian Health & Medical Research Institute, Preclinical, Imaging & Research Laboratories, Adelaide, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, London, United Kingdom; NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
4
|
Tantengco OAG, Yanagihara I. Current understanding and treatment of intra-amniotic infection with Ureaplasma spp. J Obstet Gynaecol Res 2019; 45:1796-1808. [PMID: 31313469 DOI: 10.1111/jog.14052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 12/12/2022]
Abstract
Considerable evidence has shown that intra-amniotic infection with Ureaplasma spp. increases the risk of chorioamnionitis and preterm labor. Ureaplasma spp. are among the smallest organisms, and their isolation is uncommon in routine clinical practice because of their size and high auxotrophy. Although Ureaplasma spp. have been reported as causative agents of preterm birth, they also have a high incidence in vaginal swabs collected from healthy reproductive-age women; this has led to questions on the virulence of Ureaplasma spp. and to them being considered as harmless commensal bacteria. Therefore, many efforts have been made to clarify the pathogenicity of Ureaplasma spp. at the molecular level. Ureaplasma spp. are surrounded by lipoproteins, including multiple-banded antigen. Both multiple-banded antigen and its derivative, that is, the synthetic lipopeptide, UPM-1, induce an inflammatory response in a preterm mice model, which was adequate to cause preterm birth or stillbirth. In this review, we present an overview of the virulence mechanisms of Ureaplasma spp. and treatment of ureaplasma infection during pregnancy to prevent possible serious sequelae in infants. In addition, relevant mechanisms underlying antibiotic resistance in Ureaplasma spp. are discussed. Ureaplasma spp. are naturally resistant against β-lactam antibiotics because of the lack of a cell wall. Azithromycin is one of the effective agents that can control intrauterine ureaplasma infection. In fact, macrolide- and fluoroquinolone-resistant isolates of Ureaplasma spp. have already been observed in perinatal practice in Japan.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
5
|
Buege MJ, Brown JE, Aitken SL. Solithromycin: A novel ketolide antibiotic. Am J Health Syst Pharm 2017; 74:875-887. [DOI: 10.2146/ajhp160934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Michael J. Buege
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jack E. Brown
- Department of Pharmacy, University of Rochester Medical Center, Rochester, NY
- Wegmans School of Pharmacy at St. John Fisher College, Rochester, NY
| | - Samuel L. Aitken
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, TX
| |
Collapse
|
6
|
Viasus D, Ramos O, Ramos L, Simonetti AF, Carratalà J. Solithromycin for the treatment of community-acquired bacterial pneumonia. Expert Rev Respir Med 2016; 11:5-12. [PMID: 27753516 DOI: 10.1080/17476348.2017.1249852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Community-acquired pneumonia is a major public health problem worldwide. In recent years, there has been an increase in the frequency of resistance to the antimicrobials such as β-lactams or macrolides which have habitually been used against the causative pathogens. Solithromycin, a next-generation macrolide, is the first fluoroketolide with activity against most of the frequently isolated bacteria in community-acquired pneumonia, including typical and atypical bacteria as well as macrolide-resistant Streptococcus pneumoniae. Areas covered: A detailed assessment of the literature relating to the antimicrobial activity, pharmacokinetic/pharmacodynamic properties, efficacy, tolerability and safety of solithromycin for the treatment of community-acquired bacterial pneumonia Expert commentary: Recent randomized controlled phase II/III trials have demonstrated the equivalent efficacy of oral and intravenous solithromycin compared with fluoroquinolones in patients with lower mild-to-moderate respiratory infections, and have shown that systemic adverse events are comparable between solithromycin and alternative treatments. However, studies of larger populations which are able to identify infrequent adverse events are now needed to confirm these findings. On balance, current data supports solithromycin as a promising therapy for empirical treatment in adults with community-acquired bacterial pneumonia.
Collapse
Affiliation(s)
- Diego Viasus
- a Faculty of Medicine, Health Sciences Division , Hospital Universidad del Norte and Universidad del Norte , Barranquilla , Colombia
| | - Oscar Ramos
- a Faculty of Medicine, Health Sciences Division , Hospital Universidad del Norte and Universidad del Norte , Barranquilla , Colombia
| | - Leidy Ramos
- a Faculty of Medicine, Health Sciences Division , Hospital Universidad del Norte and Universidad del Norte , Barranquilla , Colombia
| | - Antonella F Simonetti
- b Infectious Disease Department , Hospital Universitari de Bellvitge - IDIBELL , Barcelona , Spain
| | - Jordi Carratalà
- b Infectious Disease Department , Hospital Universitari de Bellvitge - IDIBELL , Barcelona , Spain.,c Spanish Network for Research in Infectious Diseases (REIPI), and Clinical Science Department, Faculty of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
7
|
The solithromycin journey-It is all in the chemistry. Bioorg Med Chem 2016; 24:6420-6428. [PMID: 27595539 DOI: 10.1016/j.bmc.2016.08.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/05/2016] [Accepted: 08/20/2016] [Indexed: 02/07/2023]
Abstract
The macrolide class of antibiotics, including the early generation macrolides erythromycin, clarithromycin and azithromycin, have been used broadly for treatment of respiratory tract infections. An increase of treatment failures of early generation macrolides is due to the upturn in bacterial macrolide resistance to 48% in the US and over 80% in Asian countries and has led to the use of alternate therapies, such as fluoroquinolones. The safety of the fluoroquinolones is now in question and alternate antibiotics for the outpatient treatment of community acquired bacterial pneumonia are needed. Telithromycin, approved in 2003, is no longer used owing to serious adverse events, collectively called the 'Ketek effects'. Telithromycin has a side chain pyridine moiety that blocks nicotinic acetylcholine receptors. Blockade of these receptors is known experimentally to cause the side effects seen with telithromycin in patients use. Solithromycin is a new macrolide, the first fluoroketolide, which has been tested successfully in two Phase 3 trials and is undergoing regulatory review at the FDA. Solithromycin is differentiated from telithromycin chemically and biologically in that its side chain is chemically different and does not significantly block nicotinic acetylcholine receptors. Solithromycin was well tolerated and effective in clinical trials.
Collapse
|
8
|
Keelan JA, Payne MS, Kemp MW, Ireland DJ, Newnham JP. A New, Potent, and Placenta-Permeable Macrolide Antibiotic, Solithromycin, for the Prevention and Treatment of Bacterial Infections in Pregnancy. Front Immunol 2016; 7:111. [PMID: 27066004 PMCID: PMC4817400 DOI: 10.3389/fimmu.2016.00111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/14/2016] [Indexed: 01/24/2023] Open
Abstract
Intrauterine infection–inflammation is a major cause of early preterm birth and subsequent neonatal mortality and acute or long-term morbidity. Antibiotics can be administered in pregnancy to prevent preterm birth either prophylactically to women at high risk for preterm delivery, or to women with diagnosed intrauterine infection, prelabor rupture of membranes, or in suspected preterm labor. The therapeutic goals of each of these scenarios are different, with different pharmacological considerations, although effective antimicrobial therapy is an essential requirement. An ideal antibiotic for these clinical indications would be (a) one that is easily administered and orally bioactive, (b) has a favorable adverse effect profile (devoid of reproductive toxicity or teratogenicity), (c) is effective against the wide range of microorganisms known to be commonly associated with intra-amniotic infection, (d) provides effective antimicrobial protection within both the fetal and amniotic compartments after maternal delivery, (e) has anti-inflammatory properties, and (f) is effective against antibiotic-resistant microorganisms. Here, we review the evidence from clinical, animal, and ex vivo/in vitro studies that demonstrate that a new macrolide-derived antibiotic – solithromycin – has all of these properties and, hence, may be an ideal antibiotic for the treatment and prevention of intrauterine infection-related pregnancy complications. While this evidence is extremely encouraging, it is still preliminary. A number of key studies need to be completed before solithromycin’s true potential for use in pregnancy can be ascertained.
Collapse
Affiliation(s)
- Jeffrey A Keelan
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| | - Matthew S Payne
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| | - Matthew W Kemp
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| | - Demelza J Ireland
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| | - John P Newnham
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| |
Collapse
|
9
|
Grigsby PL. Animal Models to Study Placental Development and Function throughout Normal and Dysfunctional Human Pregnancy. Semin Reprod Med 2016; 34:11-6. [PMID: 26752715 DOI: 10.1055/s-0035-1570031] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abnormalities of placental development and function are known to underlie many pathologies of pregnancy, including spontaneous preterm birth, fetal growth restriction, and preeclampsia. A growing body of evidence also underscores the importance of placental dysfunction in the lifelong health of both mother and offspring. However, our knowledge regarding placental structure and function throughout pregnancy remains limited. Understanding the temporal growth and functionality of the human placenta throughout the entirety of gestation is important if we are to gain a better understanding of placental dysfunction. The utilization of new technologies and imaging techniques that could enable safe monitoring of placental growth and function in vivo has become a major focus area for the National Institutes of Child Health and Human Development, as evident by the establishment of the "Human Placenta Project." Many of the objectives of the Human Placenta Project will necessitate preclinical studies and testing in appropriately designed animal models that can be readily translated to the clinical setting. This review will describe the advantages and limitations of relevant animals such as the guinea pig, sheep, and nonhuman primate models that have been used to study the role of the placenta in fetal growth disorders, preeclampsia, or other maternal diseases during pregnancy.
Collapse
Affiliation(s)
- Peta L Grigsby
- Division of Reproductive and Developmental Sciences, Department of Obstetrics and Gynecology, Oregon Health and Science University, Beaverton, Oregon
| |
Collapse
|
10
|
Furfaro LL, Spiller OB, Keelan JA, Payne MS. In vitro activity of solithromycin and its metabolites, CEM-214 and N-acetyl-CEM-101, against 100 clinical Ureaplasma spp. isolates compared with azithromycin. Int J Antimicrob Agents 2015; 46:319-24. [PMID: 26141231 DOI: 10.1016/j.ijantimicag.2015.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 11/29/2022]
Abstract
There is a strong association between vaginal and/or amniotic fluid Ureaplasma spp. colonisation and risk of preterm birth. The novel fluoroketolide antibiotic solithromycin (CEM-101) is active against Ureaplasma spp. in vitro. Evidence from ex vivo and in vivo models suggests that, unlike most macrolide antibiotics, solithromycin readily crosses the placenta. Solithromycin metabolism varies according to species; in pregnant sheep, the bioactive metabolites CEM-214 and N-acetyl-CEM-101 (NAc-CEM-101) have been shown to accumulate in the amniotic cavity following maternal solithromycin administration, potentially contributing to its antimicrobial effects. To determine the antimicrobial activity of these metabolites against Ureaplasma spp., the effects of solithromycin, CEM-214, NAc-CEM-101 and the comparator azithromycin were tested on a collection of 100 clinical Ureaplasma spp. isolates from the UK and Australia using a modified 96-well broth microdilution method. MIC90 values observed for the combined cohort were: solithromycin, 0.125 mg/L; CEM-214, 0.5mg/L; NAc-CEM-101, 0.5mg/L; and azithromycin, 2mg/L. Solithromycin showed 34-fold greater activity against Ureaplasma spp. isolates than azithromycin, whilst CEM-214 and NAc-CEM-101 possessed ca. 22% and 17% of the activity of solithromycin, respectively, significantly greater than that of azithromycin. One bacterial isolate showed resistance to azithromycin (MIC=16 mg/L) but had a much lower MIC for solithromycin (MIC=0.25mg/L). In conclusion, the metabolites of solithromycin had reduced, but still potent, activity against 100 clinical Ureaplasma spp. isolates in vitro. This may be important in some instances such as pregnancy, however studies to determine levels of the metabolites in these settings are required.
Collapse
Affiliation(s)
- Lucy L Furfaro
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA 6009, Australia
| | - O Brad Spiller
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeffrey A Keelan
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA 6009, Australia
| | - Matthew S Payne
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
11
|
Ng PY, Ireland DJ, Keelan JA. Drugs to block cytokine signaling for the prevention and treatment of inflammation-induced preterm birth. Front Immunol 2015; 6:166. [PMID: 25941525 PMCID: PMC4403506 DOI: 10.3389/fimmu.2015.00166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022] Open
Abstract
Preterm birth (PTB) at less than 37 weeks of gestation is the leading cause of neonatal morbidity and mortality. Intrauterine infection (IUI) due to microbial invasion of the amniotic cavity is the leading cause of early PTB (<32 weeks). Commensal genital tract Ureaplasma and Mycoplasma species, as well as Gram-positive and Gram-negative bacteria, have been associated with IUI-induced PTB. Bacterial activation of Toll-like receptors and other pattern recognition receptors initiates a cascade of inflammatory signaling via the NF-κB and p38 mitogen-activated protein kinase (MAPK) signaling pathways, prematurely activating parturition. Antenatal antibiotic treatment has had limited success in preventing PTB or fetal inflammation. Administration of anti-inflammatory drugs with antibiotics could be a viable therapeutic option to prevent PTB and fetal complications in women at risk of IUI and inflammation. In this mini-review, we will discuss the potential for anti-inflammatory drugs in obstetric care, focusing on the class of drugs termed “cytokine suppressive anti-inflammatory drugs” or CSAIDs. These inhibitors work by specifically targeting the NF-κB and p38 MAPK inflammatory signaling pathways. Several CSAIDs are discussed, together with clinical and toxicological considerations associated with the administration of anti-inflammatory agents in pregnancy.
Collapse
Affiliation(s)
- Pearl Y Ng
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| | - Demelza J Ireland
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| | - Jeffrey A Keelan
- King Edward Memorial Hospital, School of Women's and Infants' Health, University of Western Australia , Perth, WA , Australia
| |
Collapse
|