1
|
Zheng X, Lian Y, Zhou J, Zhou Q, Zhu Y, Tang C, Zhang P, Zhao X. Placental ischemia disrupts DNA methylation patterns in distal regulatory regions in rats. Life Sci 2023; 321:121623. [PMID: 37001402 DOI: 10.1016/j.lfs.2023.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal morbidity and mortality worldwide. However, the impact of PE on the organization of the functional architecture of the placental methylome remains largely unknown. We performed whole-genome bisulfite sequencing of placental DNA and applied a Hidden Markov Model to investigate epigenome-wide alterations in functional structures, including partially methylated domains (PMDs), low-methylated regions (LMRs), and unmethylated regions (UMRs), in a reduced uterine perfusion pressure (RUPP) rat model of PE. The remarkable similarity we observed between the rat and human placental DNA methylomes suggests that the RUPP rat model is appropriate to elucidate the epigenetic mechanisms underlying human PE. The notable changes in PMDs indicate RUPP-induced perturbation of the stressed placental methylome. This was probably regulated via modulation of the epigenetic modifier expression, including significant downregulation of Dnmt1 and Dnmt3a and upregulation of Tet2. More importantly, changes in RUPP-induced DNA methylation occurred predominately in LMRs (80 %), which represent active enhancers, rather than in canonical UMRs (3 %), which represent promoters, suggesting that placental ischemia disrupts enhancer DNA methylation. Our findings emphasize the role of enhancer methylation in response to PE, corroborating discoveries in human PE studies. We suggest paying more attention to enhancer regions in future studies on PE.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Yahan Lian
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Jing Zhou
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Qian Zhou
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yu Zhu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Chunhua Tang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Ping Zhang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Xinzhi Zhao
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
2
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Saif J, Ahmad S, Rezai H, Litvinova K, Sparatore A, Alzahrani FA, Wang K, Ahmed A. Hydrogen sulfide releasing molecule MZe786 inhibits soluble Flt-1 and prevents preeclampsia in a refined RUPP mouse model. Redox Biol 2020; 38:101814. [PMID: 33321463 PMCID: PMC7744945 DOI: 10.1016/j.redox.2020.101814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
An imbalance in angiogenic growth factors and poor utero-placental perfusion are strongly associated with preeclampsia. The reduced utero-placental perfusion (RUPP) model that mimics insufficient placental perfusion is used to study preeclampsia. The aim of this study was to develop a refined RUPP model in C57Bl/6 J mice to test the efficacy of MZe786 as a potential inhibitor of soluble Flt-1 for preeclampsia therapy. Murine RUPP (mRUPP) was induced through bilateral ligation of the ovarian arteries at E11.5 that resulted in typical preeclampsia symptoms including increase in mean arterial pressure (MAP), kidney injury and elevated soluble Flt-1 (sFlt-1) levels in the maternal plasma and amniotic fluid. The murine RUPP kidneys showed tubular and glomerular damage along with increased oxidative stress characterised by increased nitrotyrosine staining. The mRUPP displayed abnormal placental vascular histology, reduced expression of placental cystathionine γ-lyase (CSE), the hydrogen sulfide (H2S) producing enzyme, and resulted in adverse fetal outcomes (FGR). Importantly, oral administration of hydrogen sulfide (H2S)-releasing compound MZe786 from E11.5 to E17.5 successfully prevented the development of preeclampsia. Specifically, MZe786 treatment reduced maternal MAP and kidney nitrotyrosine staining and improved fetal outcome. The circulation levels of sFlt-1 were dramatically decreased in MZe786 treated animals implying that H2S released from MZe786 offered protection by inhibiting sFlt-1 levels. MZe786 prevent preeclampsia and warrant a rapid move to randomised control clinical trial. Refined mouse reduced uterine perfusion pressure (mRUPP) model exhibits preeclampsia symptoms. Mouse RUPP induces maternal hypertension, kidney injury, elevates circulating sFlt-1 levels and promotes nitrosative stress. Mouse RUPP reduces expression of the protective enzyme, placental cystathionine γ-lyase and causes poor fetal outcome. H2S releasing aspirin, MZe786, acts as an inhibitor of sFlt-1 to successfully prevent preeclampsia and improve fetal outcome. MZe786 is a novel drug with therapeutic potential to prevent preeclampsia.
Collapse
Affiliation(s)
- Jaimy Saif
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Shakil Ahmad
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Homira Rezai
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK
| | - Karina Litvinova
- Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Anna Sparatore
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Department of Pharmaceutical Science, University of Milan, Milan, Italy
| | - Faisal A Alzahrani
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Keqing Wang
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Asif Ahmed
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia; President's Office, University of Southampton, University Road, Southampton, UK.
| |
Collapse
|
4
|
Doğanlar O, Doğanlar ZB, Ovali MA, Güçlü O, Demir U, Doğan A, Uzun M. Melatonin regulates oxidative stress and apoptosis in fetal hearts of pinealectomised RUPP rats. Hypertens Pregnancy 2020; 39:429-443. [PMID: 32791955 DOI: 10.1080/10641955.2020.1802595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of melatonin on cardiac oxidative stress and apoptosis in the fetal heart in RUPP rats. METHODS The fetal heart samples were obtained from melatonin administrated RUPP rats. RESULTS Our results indicate that preeclampsia exacerbated by melatonin deficiency triggers hypoxic conditions, both mis/un-folded protein response, oxidative stress-induced DNA damage and apoptosis. Melatonin treatment provided significant therapeutic effects on fetal hearts via regulating all these stress response at cellular and molecular levels. CONCLUSION Melatonin may be considered as a potential molecule for development of preventive strategies to reduce the PE induced risk of cardiovascular diseases in offspring.
Collapse
Affiliation(s)
- Oğuzhan Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - Mehmet Akif Ovali
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University , Çanakkale, Turkey
| | - Orkut Güçlü
- Department of Cardiovascular Surgery, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - Ufuk Demir
- Experimental Research Center, Çanakkale Onsekiz Mart University , Çanakkale, Turkey
| | - Ayten Doğan
- Department of Medical Biology, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - Metehan Uzun
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University , Çanakkale, Turkey
| |
Collapse
|
5
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
6
|
Morton JS, Levasseur J, Ganguly E, Quon A, Kirschenman R, Dyck JRB, Fraser GM, Davidge ST. Characterisation of the Selective Reduced Uteroplacental Perfusion (sRUPP) Model of Preeclampsia. Sci Rep 2019; 9:9565. [PMID: 31266978 PMCID: PMC6606748 DOI: 10.1038/s41598-019-45959-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/20/2019] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is a complication of pregnancy characterised by gestational hypertension, proteinuria and/or end organ disease. The reduced uteroplacental perfusion (RUPP) model, via partial occlusion of the lower abdominal aorta, mimics insufficient placental perfusion as a primary causal characteristic of preeclampsia. However, a major limitation of the RUPP model is that perfusion is reduced to the entire hindquarters of the rat resulting in hindlimb ischemia. We hypothesised that clipping the uterine and ovarian arteries in the selective (s)RUPP model would provoke signs of preeclampsia while avoiding systemic ischemia. Sham, RUPP or sRUPP procedures were performed in pregnant Sprague Dawley rats on gestational day (GD)14. On GD21 uterine blood flow was significantly reduced in both the RUPP and sRUPP models while aortic flow was reduced only in RUPP. Both models resulted in increased MAP, increased vascular oxidative stress (superoxide generation), increased pro-inflammatory (RANTES) and reduced pro-angiogenic (endoglin) mediators. Vascular compliance and constriction were unaltered in either RUPP or sRUPP groups. In summary, refinements to the RUPP model simultaneously maintain the characteristic phenotype of preeclampsia and avoid peripheral ischemia; providing a useful tool which may be used to increase our knowledge and bring us closer to a solution for women affected by preeclampsia.
Collapse
Affiliation(s)
- J S Morton
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - J Levasseur
- Faculty of Medicine and Dentistry, Dept. of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - E Ganguly
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Faculty of Medicine and Dentistry, Dept. of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - A Quon
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - R Kirschenman
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - J R B Dyck
- Faculty of Medicine and Dentistry, Dept. of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - G M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - S T Davidge
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada. .,Faculty of Medicine and Dentistry, Dept. of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
7
|
MiR-195 modulates oxidative stress-induced apoptosis and mitochondrial energy production in human trophoblasts via flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 and pyruvate dehydrogenase phosphatase regulatory subunit. J Hypertens 2019; 36:306-318. [PMID: 28858979 DOI: 10.1097/hjh.0000000000001529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Preeclampsia is a severe pregnancy-specific syndrome defined as newly onset hypertension and proteinuria. Abnormal placental development has been generally accepted as the initial cause of the disorder. Recently, miR-195 was identified as one of the downregulated small RNAs in preeclamptic placentas. METHODS The potential targets of miR-195 in human trophoblast cells were screened by isobaric tags for relative and absolute quantification-based mass spectrum analysis. Localization of miR-195 and its targets was examined by in-situ hybridization and immunohistochemistry in human placenta. Real-time PCR, western blotting and luciferase assay were used for target validation. Apoptosis was accessed by Annexin V/PI costaining, whereas mitochondrial function by ATP measurement and tetramethylrhodamine ethyl ester fluorescence. RESULTS Two mitochondria-associated proteins, flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 (FOXRED1) and pyruvate dehydrogenase phosphatase regulatory subunit (PDPR), were identified as targets of miR-195. Overexpression of miR-195 in HTR8/SVneo cells resulted in enhanced apoptosis, decreased mitochondrial membrane potential and cellular ATP content upon hydrogen peroxide stimulation. The effects could be partially rescued by FOXRED1 or PDPR. In preeclamptic patients, lowered circulating level of miR-195 were found at early-to-mid gestation and term pregnancy, and marked increase in FOXRED1 and PDPR expression were observed in the placenta when compared with gestational week-matched controls. In addition, chronic hydrogen peroxide stimuli suppressed miR-195 expression in trophoblast cells. CONCLUSION MiR-195 could suppress mitochondrial energy production via targeting FOXRED1 and PDPR, and lead to trophoblast cell apoptosis under oxidative stress. In preeclamptic placenta, lowered level of miR-195 might be induced by chorionic oxidative stress and subsequently form a compensation mechanism to defend the disturbed energy production and cell apoptosis upon oxidative stress.
Collapse
|
8
|
Lumbers ER, Delforce SJ, Arthurs AL, Pringle KG. Causes and Consequences of the Dysregulated Maternal Renin-Angiotensin System in Preeclampsia. Front Endocrinol (Lausanne) 2019; 10:563. [PMID: 31551925 PMCID: PMC6746881 DOI: 10.3389/fendo.2019.00563] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
A healthy pregnancy outcome depends on the activation of the renin-angiotensin-aldosterone system (RAAS) as a regulated, integrated response to the growing demands of the conceptus. Both the circulating RAAS and the intrarenal renin-angiotensin system (iRAS) play major roles in cardiovascular function and fluid and electrolyte homeostasis. The circulating RAAS becomes dysfunctional in preeclampsia and we propose that dysregulation of the iRAS plays a role in development of the clinical syndrome known as preeclampsia. Experimental studies in animals have shown that placental renin, when released into the maternal circulation, can cause hypertension. We postulate that abnormal placental development is associated with over-secretion of renin and other RAS proteins/angiotensin (Ang) peptides by the placenta/decidua into the maternal circulation. We hypothesise that this is because of increased shedding of exosomes and other placental particles into the maternal circulation that not only contain RAS proteins and peptides but also microRNAs (miRNAs) that target RAS mRNAs, and Ang II type 1 receptor autoantibodies (AT1R-AAs), that are agonists for, and have the same actions as, Ang II. As a result, there is both suppression of the circulating RAAS that is responsible for maintaining maternal homeostasis and activation of the iRAS. Together with altered vascular reactivity to Ang peptides, the iRAS causes hypertension, renal damage and secondary changes in the neurohumoral control of the maternal circulation and fluid and electrolyte balance, which contribute to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Eugenie R. Lumbers
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
- *Correspondence: Eugenie R. Lumbers
| | - Sarah J. Delforce
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
| | - Anya L. Arthurs
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia
| | - Kirsty G. Pringle
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
| |
Collapse
|
9
|
Han N, Li Y, Dong Y. Therapeutic Effect of Long-Term Epidural Block in Rats with Pregnancy Induced Hypertension. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1639623. [PMID: 29568742 PMCID: PMC5820560 DOI: 10.1155/2018/1639623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pregnancy induced hypertension (PIH) causes a variety of systemic disorders that negatively affect the maternal placenta and fetal growth. Epidural sympathetic block elicits symptoms of decreased blood pressure. This study was designed to determine the therapeutic effect of long-term epidural block in rats with PIH. METHODS Forty healthy pregnant Sprague Dawley rats were randomized into four groups with each group consisting of 10 rats. On gestation day (GD) 14, rats in control group underwent a sham procedure; rats in RUPP group were operated on to obtain reduced uterine perfusion pressure (RUPP); rats in RUPP plus normal saline (NS) group were also subjected to the RUPP procedure and underwent epidural block with 25 μl normal saline twice daily until delivery; rats in RUPP plus epidural block (EB) group were treated as those in RUPP plus NS group except that an epidural block with 25 μl of 0.125% bupivacaine was administered two times per day until delivery. On GD 20, blood pressure was measured in all groups before delivery, and blood samples were collected in order to quantify the serum concentrations of vascular endothelial growth factor (VEGF) and soluble fms-like tyrosine kinase 1 (sFlt-1). RESULTS The mean arterial pressure (MAP) of rats in RUPP group (147.6 ± 6.0 mmHg) was markedly increased when compared with control group (80.8 ± 4.6 mmHg) (p < 0.05). The MAP of rats in RUPP plus EB group (114.4 ± 7.2 mmHg) was clearly decreased in contrast with RUPP group but was still higher than in control group (p < 0.05). The variation of fetal weight in all groups followed a similar trend to that of MAP. However, there were no significant differences between control group and RUPP plus EB group with respect to placental weight (p = 0.186). Variation in MAP was positively correlated with the expression of sFlt-1 in each group but was negatively correlated with VEGF. CONCLUSION This study demonstrates that long-term epidural block decreases blood pressure in PIH rats and improves the serum concentrations of VEGF and sFlt-1. Taken together, long-term epidural block may have a potential role in PIH treatment.
Collapse
Affiliation(s)
- Nianjiao Han
- Department of Anesthesia, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Herping District, Shenyang 110004, China
| | - Yang Li
- Department of Anesthesia, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Herping District, Shenyang 110004, China
| | - Youjing Dong
- Department of Anesthesia, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Herping District, Shenyang 110004, China
| |
Collapse
|
10
|
Uzun M, Gencer M, Turkon H, Oztopuz RO, Demir U, Ovali MA. Effects of Melatonin on Blood Pressure, Oxidative Stress and Placental Expressions of TNFα, IL-6, VEGF and sFlt-1 in RUPP Rat Model of Preeclampsia. Arch Med Res 2018; 48:592-598. [PMID: 29397206 DOI: 10.1016/j.arcmed.2017.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Metehan Uzun
- Department of Physiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey.
| | - Meryem Gencer
- Department of Obstetrics and Gynecology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Hakan Turkon
- Department of Biochemistry, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Rahime Ozlem Oztopuz
- Department of Biophysics, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Ufuk Demir
- Department of Physiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Mehmet Akif Ovali
- Department of Physiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| |
Collapse
|