1
|
Lawson JM, Salem SE, Miller D, Kahler A, van den Boer WJ, Shilton CA, Sever T, Mouncey RR, Ward J, Hampshire DJ, Foote AK, Bryan JS, Juras R, Pynn OD, Davis BW, Bellone RR, Raudsepp T, de Mestre AM. Naturally occurring horse model of miscarriage reveals temporal relationship between chromosomal aberration type and point of lethality. Proc Natl Acad Sci U S A 2024; 121:e2405636121. [PMID: 39102548 PMCID: PMC11331123 DOI: 10.1073/pnas.2405636121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 08/07/2024] Open
Abstract
Chromosomal abnormalities are a common cause of human miscarriage but rarely reported in any other species. As a result, there are currently inadequate animal models available to study this condition. Horses present one potential model since mares receive intense gynecological care. This allowed us to investigate the prevalence of chromosomal copy number aberrations in 256 products of conception (POC) in a naturally occurring model of pregnancy loss (PL). Triploidy (three haploid sets of chromosomes) was the most common aberration, found in 42% of POCs following PL over the embryonic period. Over the same period, trisomies and monosomies were identified in 11.6% of POCs and subchromosomal aberrations in 4.2%. Whole and subchromosomal aberrations involved 17 autosomes, with chromosomes 3, 4, and 20 having the highest number of aberrations. Triploid fetuses had clear gross developmental anomalies of the brain. Collectively, data demonstrate that alterations in chromosome number contribute to PL similarly in women and mares, with triploidy the dominant ploidy type over the key period of organogenesis. These findings, along with highly conserved synteny between human and horse chromosomes, similar gestation lengths, and the shared single greatest risk for PL being advancing maternal age, provide strong evidence for the first animal model to truly recapitulate many key features of human miscarriage arising due to chromosomal aberrations, with shared benefits for humans and equids.
Collapse
Affiliation(s)
- Jessica M. Lawson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Shebl E. Salem
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Donald Miller
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Anne Kahler
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Wilhelmina J. van den Boer
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Charlotte A. Shilton
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Tia Sever
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Rebecca R. Mouncey
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Jenna Ward
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Daniel J. Hampshire
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Alastair K. Foote
- Rossdales Laboratories, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Jill S. Bryan
- Rossdales Laboratories, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Oliver D. Pynn
- Rossdales Veterinary Surgeons, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA95617
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA95617
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Amanda M. de Mestre
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| |
Collapse
|
2
|
Lawson JM, Shilton CA, Lindsay-McGee V, Psifidi A, Wathes DC, Raudsepp T, de Mestre AM. Does inbreeding contribute to pregnancy loss in Thoroughbred horses? Equine Vet J 2024; 56:711-718. [PMID: 38221707 DOI: 10.1111/evj.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Excessive inbreeding increases the probability of uncovering homozygous recessive genotypes and has been associated with an increased risk of retained placenta and lower semen quality. No genomic analysis has investigated the association between inbreeding levels and pregnancy loss. OBJECTIVES To compare genetic inbreeding coefficients (F) of naturally occurring Thoroughbred Early Pregnancy Loss (EPLs), Mid and Late term Pregnancy Loss (MLPL) and Controls. The F value was hypothesised to be higher in cases of pregnancy loss (EPLs and MLPLs) than Controls. STUDY DESIGN Observational case-control study. METHODS Allantochorion and fetal DNA from EPL (n = 37, gestation age 14-65 days), MLPL (n = 94, gestational age 70 days-24 h post parturition) and Controls (n = 58) were genotyped on the Axiom Equine 670K SNP Genotyping Array. Inbreeding coefficients using Runs of Homozygosity (FROH) were calculated using PLINK software. ROHs were split into size categories to investigate the recency of inbreeding. RESULTS MLPLs had significantly higher median number of ROH (188 interquartile range [IQR], 180.8-197.3), length of ROH (3.10, IQR 2.93-3.33), and total number of ROH (590.8, IQR 537.3-632.3), and FROH (0.26, IQR 0.24-0.28) when compared with the Controls and the EPLs (p < 0.05). There was no significant difference in any of the inbreeding indices between the EPLs and Controls. The MLPLs had a significantly higher proportion of long (>10 Mb) ROH (2.5%, IQR 1.6-3.6) than the Controls (1.7%, IQR 0.6-2.5), p = 0.001. No unique ROHs were found in the EPL or MLPL populations. MAIN LIMITATIONS SNP-array data does not allow analysis of every base in the sequence. CONCLUSIONS This first study of the effect of genomic inbreeding levels on pregnancy loss showed that inbreeding is a contributor to MLPL, but not EPL in the UK Thoroughbred population. Mating choices remain critical, because inbreeding may predispose to MLPL by increasing the risk of homozygosity for specific lethal allele(s).
Collapse
Affiliation(s)
- Jessica M Lawson
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Victoria Lindsay-McGee
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - Androniki Psifidi
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - D Claire Wathes
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| |
Collapse
|
3
|
Martinez Zuviria S, Ciurkiewicz M, Wohlsein P, Madariaga G, Zuccolilli G. First Description of Fetal Cystic Hygroma Associated With Early Equine Pregnancy Loss. J Equine Vet Sci 2022; 119:104148. [PMID: 36404492 DOI: 10.1016/j.jevs.2022.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Cystic hygroma (hygroma cysticum) is a malformation that has not yet been described as a cause of early pregnancy loss in equines. The condition is a congenital anomaly occurring during embryogenesis due to a failure in which the primitive lymphatic sac does not reach the venous system at the jugular vein, resulting in a lymphatic stasis that starts in the neck region and continues to the rest of the body. From 2015 to 2020, a total of 5,730 ultrasound examinations were performed in mares from 43 different horse farms and embryo transfer farms when sexing pregnancies. In 12 pregnant mares, a suspected fetal cystic hygroma was diagnosed via transrectal ultrasound performed from day 52 to 75 of pregnancy. Six fetuses were collected and fixed to conduct histopathological and karyotyping. Macroscopic and microscopic analysis supported the suggested diagnosis being the first description of cystic hygroma in equine fetuses and concluded as a cause of pregnancy loss around 65 days of gestation.
Collapse
Affiliation(s)
| | | | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | - Gonzalo Madariaga
- Laboratorio de Patología Especial Veterinaria "Dr. B. Epstein" Facultad de Ciencias Veterinarias Universidad Nacional de La Plata, Argentina
| | - Gustavo Zuccolilli
- Instituto de Anatomía de la Facultad de Ciencias Veterinarias Universidad Nacional de La Plata, Argentina
| |
Collapse
|
4
|
Shilton CA, Kahler A, Roach JM, Raudsepp T, de Mestre AM. Lethal variants of equine pregnancy: is it the placenta or foetus leading the conceptus in the wrong direction? Reprod Fertil Dev 2022; 35:51-69. [PMID: 36592981 DOI: 10.1071/rd22239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Embryonic and foetal loss remain one of the greatest challenges in equine reproductive health with 5-10% of established day 15 pregnancies and a further 5-10% of day 70 pregnancies failing to produce a viable foal. The underlying reason for these losses is variable but ultimately most cases will be attributed to pathologies of the environment of the developing embryo and later foetus, or a defect intrinsic to the embryo itself that leads to lethality at any stage of gestation right up to birth. Historically, much research has focused on the maternal endometrium, endocrine and immune responses in pregnancy and pregnancy loss, as well as infectious agents such as pathogens, and until recently very little was known about the both small and large genetic variants associated with reduced foetal viability in the horse. In this review, we first introduce key aspects of equine placental and foetal development. We then discuss incidence, risk factors and causes of pregnancy loss, with the latter focusing on genetic variants described to date that can impact equine foetal viability.
Collapse
Affiliation(s)
- Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Jessica M Roach
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| |
Collapse
|
5
|
Kahler A, McGonnell IM, Smart H, Kowalski AA, Smith KC, Wathes DC, de Mestre AM. Fetal morphological features and abnormalities associated with equine early pregnancy loss. Equine Vet J 2020; 53:530-541. [PMID: 32869365 DOI: 10.1111/evj.13340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/15/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Early pregnancy loss (EPL) occurs in approximately 8% of equine pregnancies, although the aetiology is mostly unknown and embryonic/fetal morphological abnormalities associated with EPL are not defined. OBJECTIVES To compare the morphology of EPL to clinically normal embryos/fetuses and previously described embryonic/fetal developmental milestones. To identify morphological abnormalities associated with equine EPL. STUDY DESIGN Observational case-control study. METHODS Embryos/fetuses were obtained from clinically normal Thoroughbred and pony pregnancies (n = 11) and following EPL from Thoroughbred mares (n = 27). The crown-rump length (CRL) of embryos/fetuses was measured and macroscopic morphology and developmental age were determined independently by three blinded examiners. Sagittal sections of EPL (n = 13) and control (n = 6) embryos/fetuses were assessed microscopically. Fisher's exact test was used to determine significance (P < .05) and correlations were expressed by Pearson coefficient. RESULTS Age and CRL were strongly positively correlated in clinically normal Thoroughbred and reference (n = 15, R = .9 (95% CI: 0.8-1.0), R2 = .9, P < .0001) but not EPL embryos/fetuses (n = 19, R = .1 (95% CI: -0.4 to 0.5), R2 = .01, P = .75). Relative to controls, the CRL of EPL embryos/fetuses was smaller, with evidence of intrauterine growth retardation (IUGR) in 3/8 fetuses assessed. In 9/13 EPL embryos/fetuses, nonspecific neural tissue alterations were identified including disruption of developing pros-, mes- and rhombencephalon and the presence of haemosiderin, indicating premortem haemorrhage. Failed neural tube closure was identified in 1/13 EPL embryos/fetuses. Subcutaneous haemorrhage was present in 14/27 EPL embryos/fetuses. MAIN LIMITATIONS Autolysis significantly affected 15/27 EPL embryos/fetuses, excluding them from complete assessment. The IUGR reference cut-off values were based on a small number of controls. CONCLUSIONS Morphological features associated with equine EPL were a mismatch between embryonic/fetal size and age, and alterations of the developing neural tissue and localised subcutaneous haemorrhage. Failed neural tube closure was confirmed as a rare specific abnormality.
Collapse
Affiliation(s)
- Anne Kahler
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Harriette Smart
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Alycia A Kowalski
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK.,Veterinary Care, University of Wisconsin, Madison, USA
| | - Ken C Smith
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - D Claire Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
6
|
Shilton CA, Kahler A, Davis BW, Crabtree JR, Crowhurst J, McGladdery AJ, Wathes DC, Raudsepp T, de Mestre AM. Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse. Sci Rep 2020; 10:13314. [PMID: 32769994 PMCID: PMC7415156 DOI: 10.1038/s41598-020-69967-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
The first 8 weeks of pregnancy is a critical time, with the majority of pregnancy losses occurring during this period. Abnormal chromosome number (aneuploidy) is a common finding in human miscarriage, yet is rarely reported in domestic animals. Equine early pregnancy loss (EPL) has no diagnosis in over 80% of cases. The aim of this study was to characterise aneuploidies associated with equine EPL. Genomic DNA from clinical cases of spontaneous miscarriage (EPLs; 14-65 days of gestation) and healthy control placentae (various gestational ages) were assessed using a high density genotyping array. Aneuploidy was detected in 12/55 EPLs (21.8%), and 0/15 healthy control placentae. Whole genome sequencing (30X) and digital droplet PCR (ddPCR) validated results. The majority of these aneuploidies have never been reported in live born equines, supporting their embryonic/fetal lethality. Aneuploidies were detected in both placental and fetal compartments. Rodents are currently used to study how maternal ageing impacts aneuploidy risk, however the differences in reproductive biology is a limitation of this model. We present the first evidence of aneuploidy in naturally occurring equine EPLs at a similar rate to human miscarriage. We therefore suggest the horse as an alternative to rodent models to study mechanisms resulting in aneuploid pregnancies.
Collapse
Affiliation(s)
- Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | | | - D Claire Wathes
- Department of Production and Population Health, The Royal Veterinary College, University of London, Hatfield, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
7
|
de Mestre A, Rose B, Chang Y, Wathes D, Verheyen K. Multivariable analysis to determine risk factors associated with early pregnancy loss in thoroughbred broodmares. Theriogenology 2019; 124:18-23. [DOI: 10.1016/j.theriogenology.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/13/2018] [Accepted: 10/06/2018] [Indexed: 11/26/2022]
|
8
|
Rose B, Firth M, Morris B, Roach J, Wathes D, Verheyen K, de Mestre A. Descriptive study of current therapeutic practices, clinical reproductive findings and incidence of pregnancy loss in intensively managed thoroughbred mares. Anim Reprod Sci 2018; 188:74-84. [DOI: 10.1016/j.anireprosci.2017.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/27/2023]
|
9
|
Transrectal ultrasonography for measuring of combined utero-placental thickness in pregnant Mangalarga Marchador mares. Theriogenology 2017; 96:142-144. [DOI: 10.1016/j.theriogenology.2017.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/20/2022]
|