1
|
Parchem JG, Fan H, Mann LK, Chen Q, Won JH, Gross SS, Zhao Z, Taegtmeyer H, Papanna R. Fetal metabolic adaptations to cardiovascular stress in twin-twin transfusion syndrome. iScience 2023; 26:107424. [PMID: 37575192 PMCID: PMC10415929 DOI: 10.1016/j.isci.2023.107424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Monochorionic-diamniotic twin pregnancies are susceptible to unique complications arising from a single placenta shared by two fetuses. Twin-twin transfusion syndrome (TTTS) is a constellation of disturbances caused by unequal blood flow within the shared placenta giving rise to a major hemodynamic imbalance between the twins. Here, we applied TTTS as a model to uncover fetal metabolic adaptations to cardiovascular stress. We compared untargeted metabolomic analyses of amniotic fluid samples from severe TTTS cases vs. singleton controls. Amniotic fluid metabolites demonstrated alterations in fatty acid, glucose, and steroid hormone metabolism in TTTS. Among TTTS cases, unsupervised principal component analysis revealed two distinct clusters of disease defined by levels of glucose metabolites, amino acids, urea, and redox status. Our results suggest that the human fetal heart can adapt to hemodynamic stress by modulating its glucose metabolism and identify potential differences in the ability of individual fetuses to respond to cardiovascular stress.
Collapse
Affiliation(s)
- Jacqueline G. Parchem
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lovepreet K. Mann
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children’s Memorial Hermann Hospital, Houston, TX, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jong H. Won
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ramesha Papanna
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children’s Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Kolvatzis C, Tsakiridis I, Kalogiannidis IA, Tsakoumaki F, Kyrkou C, Dagklis T, Daniilidis A, Michaelidou AM, Athanasiadis A. Utilizing Amniotic Fluid Metabolomics to Monitor Fetal Well-Being: A Narrative Review of the Literature. Cureus 2023; 15:e36986. [PMID: 37139280 PMCID: PMC10150141 DOI: 10.7759/cureus.36986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Fetal and perinatal periods are critical phases for long-term development. Early diagnosis of maternal complications is challenging due to the great complexity of these conditions. In recent years, amniotic fluid has risen in a prominent position in the latest efforts to describe and characterize prenatal development. Amniotic fluid may provide real-time information on fetal development and metabolism throughout pregnancy as substances from the placenta, fetal skin, lungs, gastric fluid, and urine are transferred between the mother and the fetus. Applying metabolomics to monitor fetal well-being, in such a context, could help in the understanding, diagnosis, and treatment of these conditions and is a promising area of research. This review shines a spotlight on recent amniotic fluid metabolomics studies and their methods as an interesting tool for the assessment of many conditions and the identification of biomarkers. Platforms in use, such as proton nuclear magnetic resonance (1H NMR) and ultra-high-performance liquid chromatography (UHPLC), have different merits, and a combinatorial approach could be valuable. Metabolomics may also be used in the quest for habitual diet-induced metabolic signals in amniotic fluid. Finally, analysis of amniotic fluid can provide information on exposure to exogenous substances by detecting the exact levels of metabolites carried to the fetus and associated metabolic effects.
Collapse
|
3
|
Liu T, Wen L, Huang S, Han TL, Zhang L, Fu H, Li J, Tong C, Qi H, Saffery R, Baker PN, Kilby MD. Comprehensive Metabolomic Profiling of Cord Blood and Placental Tissue in Surviving Monochorionic Twins Complicated by Twin-Twin Transfusion Syndrome With or Without Fetoscopic Laser Coagulation Surgery: A Retrospective Cohort Study. Front Bioeng Biotechnol 2022; 10:786755. [PMID: 35528207 PMCID: PMC9070302 DOI: 10.3389/fbioe.2022.786755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives: To investigate metabolomic perturbations caused by twin-twin transfusion syndrome, metabolic changes associated with fetoscopic laser coagulation in both placental tissue and cord plasma, and to investigate differential metabolites pertinent to varying fetal outcomes, including hemodynamic status, birth weight, and cardiac function, of live-born babies. Methods: Placental tissue and cord plasma samples from normal term or uncomplicated preterm-born monochorionic twins and those complicated by twin-twin transfusion syndrome treated with or without fetoscopic laser coagulation were analyzed by high-performance liquid chromatography metabolomic profiling. Sixteen comparisons of different co-twin groups were performed. Partial least squares–discriminant analysis, metabolic pathway analysis, biomarker analysis, and Spearman’s correlation analysis were conducted based on differential metabolites used to determine potential biomarkers in different comparisons and metabolites that are pertinent to neonatal birth weight and left ventricular ejection fraction. Results: These metabolomic investigations showed that the cord plasma metabolome has a better performance in discriminating fetuses among different hemodynamic groups than placental tissue. The metabolic alteration of twin-twin transfusion syndrome in these two types of samples centers on fatty acid and lipid metabolism. The fetoscopic laser coagulation procedure improves the metabolomic change brought by this syndrome, making the metabolomes of the treated group less distinguishable from those of the control and preterm birth groups. Certain compounds, especially lipids and lipid-like molecules, are noted to be potential biomarkers of this morbid disease and pertinent to neonatal birth weight and ejection fraction. Conclusions: Fetoscopic laser coagulation can ameliorate the metabolomic alteration caused by twin-twin transfusion syndrome in placental tissue and cord plasma, which are involved mainly in fatty acid and lipid-like molecule metabolism. Certain lipids and lipid-like molecules are helpful in differentiating co-twins of different hemodynamic statuses and are significantly correlated with neonatal birth weight or ejection fraction.
Collapse
Affiliation(s)
- Tianjiao Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li Wen
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuai Huang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-li Han
- International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lan Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huijia Fu
- Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junnan Li
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Chao Tong, ; Hongbo Qi,
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Women and Children’s Health Center, Chongqing, China
- *Correspondence: Chao Tong, ; Hongbo Qi,
| | - Richard Saffery
- Cancer, Disease and Developmental Epigenetics, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Philip N. Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Mark D. Kilby
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, United Kingdom
- Fetal Medicine Centre, Birmingham Women’s and Children’s Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
4
|
Yang Y, Wen L, Han TL, Zhang L, Fu H, Gan J, Saffery R, Tong C, Li J, Qi H, Baker PN, Kilby MD. Twin-twin transfusion syndrome is associated with alterations in the metabolic profile of maternal plasma in early gestation: a pilot study. Prenat Diagn 2021; 41:1080-1088. [PMID: 33720417 DOI: 10.1002/pd.5933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/22/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Twin-twin transfusion syndrome (TTTS) causes perinatal mortality and morbidity in monochorionic twins. The early recognition of and interventional therapy for TTTS is associated with a more favorable overall prognosis. However, the prediction by the use of ultrasound in the first trimester has relatively poor sensitivity and specificity. This study aimed to identify metabolic biomarkers to aid in ultrasound screening of TTTS. METHODS Maternal plasma was prospectively collected between 11 and 15 weeks of gestation in apparently uncomplicated monochorionic-diamniotic twin pregnancies. This cohort was divided into: (i) patients who were subsequently diagnosed with TTTS by using ultrasound; (ii) uncomplicated matched controls. Metabolome was profiled by using gas chromatography-mass spectrometry. RESULTS The levels of fatty acids, organic acids, oxaloacetic acid, and beta-alanine were significantly lower in the TTTS maternal plasma at 11-15 weeks of gestation, and methionine and glycine were also higher (p < 0.05, FDR<0.12). Generally, in TTTS pregnancies, the metabolisms of amino acid, carbohydrate, cofactors, vitamins, and purine were "down-regulated"; whereas bile secretion and pyrimidine metabolism were "upregulated." CONCLUSIONS The metabolomics scanning of early gestation maternal plasma may identify those pregnancies that subsequently develop TTTS; in particular, downregulated fatty acid levels may be biologically plausible to be implicated in the pathogenesis of TTTS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huijia Fu
- Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Gan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Richard Saffery
- Cancer, Disease and Developmental Epigenetics, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junnan Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,College of Life Sciences, University of Leicester, Leicester, UK
| | - Mark D Kilby
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK.,Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
| |
Collapse
|
5
|
Abascal-Saiz A, Fuente-Luelmo E, Haro M, de la Calle M, Ramos-Álvarez MP, Perdomo G, Bartha JL. Placental Compartmentalization of Lipid Metabolism: Implications for Singleton and Twin Pregnancies. Reprod Sci 2020; 28:1150-1160. [PMID: 33171514 DOI: 10.1007/s43032-020-00385-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/01/2020] [Indexed: 11/27/2022]
Abstract
The study of placental lipid metabolism in uncomplicated pregnancies has not been developed in the literature to date. Its importance lies in expanding the knowledge of placental function to enable comparison with pathological pregnancies in future research. The aim of the present study was to compare the lipid metabolic activity and storage of the maternal and fetal sides of the placenta in healthy pregnancies. Moreover, we compare singleton vs. twin pregnancies to determine if placental metabolic needs differ. We analyzed placental explants from uncomplicated pregnancies, 20 from singleton and 8 from bichorial-biamniotic twin pregnancies (n = 28). Six cotyledon fragments were collected from each placenta at different distances from the umbilical cord, three close to the chorionic plate (hereinafter, we will refer to them as "fetal side") and another three close to the anchoring villi into the decidua basalis (referred to as "maternal side"). The samples were analyzed for quantitative assay placental fatty acid oxidation (FAO) and esterification (FAE) activities and triglyceride levels. The location of lipid storage in the chorionic villi was assessed by Oil red-O staining. Placental fatty acid oxidation did not show differences when comparing the maternal and fetal sides of the placenta or between single and twin pregnancies. When comparing placental sides, FAE was increased twofold in the maternal side compared to the fetal side of the placenta (P = 0.013). The tendency for lipogenesis in the placenta was exemplified by the FAE/FAO ratio, which was a 37.1% higher on the maternal side (P = 0.019). Despite this, triglyceride levels were five times higher in the fetal side than in the maternal one (P = 0.024). When analyzing singleton vs. twins, FAE was superior in the fetal side in multiple pregnancies (× 2.6, P = 0.007) and the FAE/FAO ratio was significantly higher in twins than in singleton pregnancies, on both sides of the placenta. Despite this finding, triglyceride levels were similar in twin and singleton pregnancies. Comparing the placentas of twins in the same pregnancy, there were no differences in lipid metabolism (FAO or FAE) or placental triglyceride levels between the two co-twins. Using Oil red-O staining, lipid storage in chorionic villi was found to be located on the syncytiotrophoblast cells and not in the connecting axis. The maternal side of the placenta is more active in the esterification of fatty acids, while the storage of neutral lipids concentrates on the fetal side. Moreover, multiple gestations have increased esterification without changes in the concentration of placental triglycerides, probably due to a higher transfer to the fetal circulation in response to the greater energy demand from twin fetuses.
Collapse
Affiliation(s)
- Alejandra Abascal-Saiz
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Eva Fuente-Luelmo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - María Haro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - María de la Calle
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María P Ramos-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - Germán Perdomo
- Department of Health Sciences, University of Burgos, Burgos, Spain.,Institute of Molecular Biology and Genetic (IMBG), CSIC - University of Valladolid, Valladolid, Spain
| | - José L Bartha
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
6
|
Bardanzellu F, Fanos V. The choice of amniotic fluid in metabolomics for the monitoring of fetus health - update. Expert Rev Proteomics 2019; 16:487-499. [PMID: 31055975 DOI: 10.1080/14789450.2019.1615892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: In recent years, several studies have highlighted the promising role of metabolomics in the analysis of amniotic fluid (AF), to describe and characterize the interactions occurring between the mother and the fetus during prenatal development. Among the available biological fluids, AF represents an ideal substrate to provide dynamic information regarding fetal organogenesis and metabolism through pregnancy, since it originates from both maternal and fetal tissues and contains substances derived from placenta, fetal skin, lungs, gastric fluid, and fetal urine. Areas covered: In this paper, we provide an update reporting the most recent results on AF metabolomics in the assessment of feto-maternal health, regarding physiological pregnancies but even fields such as prematurity, bronchopulmonary dysplasia, fetal malformations, chromosomopathies, maternal diseases, placental inflammation or infections, maternal diet or exposure to exogenous substances, according to the literature found on MEDLINE since 2015. Expert opinion: Metabolomics shows a promising role in describing both physiology and disease; the goal would be the identification of biomarkers able to precociously and efficaciously detect pathological conditions, allowing the identification of complicated pregnancy and improving their management. However, this field is under development and its reliability still needs to be clarified, especially through more numerous and accurate studies.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- a Neonatal Intensive Care Unit , AOU and University of Cagliari , Monserrato , Italy
| | - Vassilios Fanos
- a Neonatal Intensive Care Unit , AOU and University of Cagliari , Monserrato , Italy
| |
Collapse
|
7
|
Shan J, Xie T, Xu J, Zhou H, Zhao X. Metabolomics of the amniotic fluid: Is it a feasible approach to evaluate the safety of Chinese medicine during pregnancy? J Appl Toxicol 2018; 39:163-171. [PMID: 29931825 DOI: 10.1002/jat.3653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/08/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
The use of Chinese medicines (CMs) during pregnancy has long been a major public health concern. Although CMs have been shown to be effective in treating infertility and preventing miscarriage, their use has been restricted, mainly because of limited knowledge of their potential toxicity. Accurate toxicology data are urgently required to assess whether these CMs are safe for maternal health and fetal development. Amniotic fluid (AF) contains carbohydrates, lipids and phospholipids, urea and proteins, all of which aid in the growth of the fetus and reflect the mother's health status as well. The changes in metabolomic patterns of AF are related to pathophysiological occurrences during the course of pregnancy. In this review, we provide a summary of the research performed in recent years on metabolomic AF samples, and use our previous study as an example to explore the feasibility of metabolomics of AF to evaluate the safety of CMs during pregnancy. We believe that metabolomics of AF play a far more important role than traditional morphology methods in the safety evaluation of CMs for pregnancy, with a higher sensitivity and correlation.
Collapse
Affiliation(s)
- Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huifang Zhou
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|