1
|
Wang H, Chen Y, Wang L, Liu Q, Yang S, Wang C. Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Front Pharmacol 2023; 14:1265178. [PMID: 37818188 PMCID: PMC10561302 DOI: 10.3389/fphar.2023.1265178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
This manuscript provides an in-depth review of the significance of quality control in herbal medication products, focusing on its role in maintaining efficiency and safety. With a historical foundation in traditional medicine systems, herbal remedies have gained widespread popularity as natural alternatives to conventional treatments. However, the increasing demand for these products necessitates stringent quality control measures to ensure consistency and safety. This comprehensive review explores the importance of quality control methods in monitoring various aspects of herbal product development, manufacturing, and distribution. Emphasizing the need for standardized processes, the manuscript delves into the detection and prevention of contaminants, the authentication of herbal ingredients, and the adherence to regulatory standards. Additionally, it highlights the integration of traditional knowledge and modern scientific approaches in achieving optimal quality control outcomes. By emphasizing the role of quality control in herbal medicine, this manuscript contributes to promoting consumer trust, safeguarding public health, and fostering the responsible use of herbal medication products.
Collapse
Affiliation(s)
- Hongting Wang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, China
| | | | | | | | | | - Cunqin Wang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Smith MD, Pillman K, Jankovic-Karasoulos T, McAninch D, Wan Q, Bogias KJ, McCullough D, Bianco-Miotto T, Breen J, Roberts CT. Large-scale transcriptome-wide profiling of microRNAs in human placenta and maternal plasma at early to mid gestation. RNA Biol 2021; 18:507-520. [PMID: 34412547 PMCID: PMC8677031 DOI: 10.1080/15476286.2021.1963105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are increasingly seen as important regulators of placental development and opportunistic biomarker targets. Given the difficulty in obtaining samples from early gestation and subsequent paucity of the same, investigation of the role of miRNAs in early gestation human placenta has been limited. To address this, we generated miRNA profiles using 96 placentas from presumed normal pregnancies, across early gestation, in combination with matched profiles from maternal plasma. Placenta samples range from 6 to 23 weeks' gestation, a time period that includes placenta from the early, relatively low but physiological (6-10 weeks' gestation) oxygen environment, and later, physiologically normal oxygen environment (11-23 weeks' gestation).We identified 637 miRNAs with expression in 86 samples (after removing poor quality samples), showing a clear gestational age gradient from 6 to 23 weeks' gestation. We identified 374 differentially expressed (DE) miRNAs between placentas from 6-10 weeks' versus 11-23 weeks' gestation. We see a clear gestational age group bias in miRNA clusters C19MC, C14MC, miR-17 ~ 92 and paralogs, regions that also include many DE miRNAs. Proportional change in expression of placenta-specific miRNA clusters was reflected in maternal plasma.The presumed introduction of oxygenated maternal blood into the placenta (between ~10 and 12 weeks' gestation) changes the miRNA profile of the chorionic villus, particularly in placenta-specific miRNA clusters. Data presented here comprise a clinically important reference set for studying early placenta development and may underpin the generation of minimally invasive methods for monitoring placental health.
Collapse
Affiliation(s)
- Melanie D Smith
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Katherine Pillman
- Centre for Cancer Biology, University of South Australia/SA Pathology, Adelaide, SA, Australia
| | - Tanja Jankovic-Karasoulos
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Qianhui Wan
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - K Justinian Bogias
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Genomics Centre, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|