1
|
Pan M, Zhou J, Wang J, Cao W, Li L, Wang L. The role of placental aging in adverse pregnancy outcomes: A mitochondrial perspective. Life Sci 2023; 329:121924. [PMID: 37429418 DOI: 10.1016/j.lfs.2023.121924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Premature placental aging is associated with placental insufficiency, which reduces the functional capacity of the placenta, leading to adverse pregnancy outcomes. Placental mitochondria are vital organelles that provide energy and play essential roles in placental development and functional maintenance. In response to oxidative stress, damage, and senescence, an adaptive response is induced to selectively remove mitochondria through the mitochondrial equivalent of autophagy. However, adaptation can be disrupted when mitochondrial abnormalities or dysfunctions persist. This review focuses on the adaptation and transformation of mitochondria during pregnancy. These changes modify placental function throughout pregnancy and can cause complications. We discuss the relationship between placental aging and adverse pregnancy outcomes from the perspective of mitochondria and potential approaches to improve abnormal pregnancy outcomes.
Collapse
Affiliation(s)
- Meijun Pan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
2
|
Gong GS, Muyayalo KP, Zhang YJ, Lin XX, Liao AH. Flip a coin: cell senescence at the maternal-fetal interface†. Biol Reprod 2023; 109:244-255. [PMID: 37402700 DOI: 10.1093/biolre/ioad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
During pregnancy, cell senescence at the maternal-fetal interface is required for maternal well-being, placental development, and fetal growth. However, recent reports have shown that aberrant cell senescence is associated with multiple pregnancy-associated abnormalities, such as preeclampsia, fetal growth restrictions, recurrent pregnancy loss, and preterm birth. Therefore, the role and impact of cell senescence during pregnancy requires further comprehension. In this review, we discuss the principal role of cell senescence at the maternal-fetal interface, emphasizing its "bright side" during decidualization, placentation, and parturition. In addition, we highlight the impact of its deregulation and how this "dark side" promotes pregnancy-associated abnormalities. Furthermore, we discuss novel and less invasive therapeutic practices associated with the modulation of cell senescence during pregnancy.
Collapse
Affiliation(s)
- Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Kahindo P Muyayalo
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D.R. Congo
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
3
|
Kajdy A, Sys D, Modzelewski J, Bogusławska J, Cymbaluk-Płoska A, Kwiatkowska E, Bednarek-Jędrzejek M, Borowski D, Stefańska K, Rabijewski M, Baran A, Torbe A, Feduniw S, Kwiatkowski S. Evidence of Placental Aging in Late SGA, Fetal Growth Restriction and Stillbirth-A Systematic Review. Biomedicines 2023; 11:1785. [PMID: 37509425 PMCID: PMC10376283 DOI: 10.3390/biomedicines11071785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
During pregnancy, the placenta undergoes a natural aging process, which is considered normal. However, it has been hypothesized that an abnormally accelerated and premature aging of the placenta may contribute to placenta-related health issues. Placental senescence has been linked to several obstetric complications, including abnormal fetal growth, preeclampsia, preterm birth, and stillbirth, with stillbirth being the most challenging. A systematic search was conducted on Pubmed, Embase, and Scopus databases. Twenty-two full-text articles were identified for the final synthesis. Of these, 15 presented original research and 7 presented narrative reviews. There is a paucity of evidence in the literature on the role of placental aging in late small for gestational age (SGA), fetal growth restriction (FGR), and stillbirth. For future research, guidelines for both planning and reporting research must be implemented. The inclusion criteria should include clear differentiation between early and late SGA and FGR. As for stillbirths, only those with no other known cause of stillbirth should be included in the studies. This means excluding stillbirths due to congenital defects, infections, placental abruption, and maternal conditions affecting feto-maternal hemodynamics.
Collapse
Affiliation(s)
- Anna Kajdy
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | - Dorota Sys
- Department of Medical Statistics, School of Public Health, Centre of Postgraduate Medical Education, 01-828 Warsaw, Poland
| | - Jan Modzelewski
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland
| | | | - Dariusz Borowski
- Clinic of Obstetrics and Gynaecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Katarzyna Stefańska
- Department of Obstetrics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Michał Rabijewski
- Department of Reproductive Health, Center of Postgraduate Medical Education, Centre of Postgraduate Medical Education, Żelazna 90 St., 01-004 Warsaw, Poland
| | - Arkadiusz Baran
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | - Andrzej Torbe
- Department Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Stepan Feduniw
- Department of Gynecology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Sebastian Kwiatkowski
- Department Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Alfano R, Zugna D, Barros H, Bustamante M, Chatzi L, Ghantous A, Herceg Z, Keski-Rahkonen P, de Kok TM, Nawrot TS, Relton CL, Robinson O, Roumeliotaki T, Scalbert A, Vrijheid M, Vineis P, Richiardi L, Plusquin M. Cord blood epigenome-wide meta-analysis in six European-based child cohorts identifies signatures linked to rapid weight growth. BMC Med 2023; 21:17. [PMID: 36627699 PMCID: PMC9831885 DOI: 10.1186/s12916-022-02685-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing early-life exposures and subsequent diseases, is a possible mechanism underlying early-life programming. METHODS Here, a meta-analysis of Illumina HumanMethylation 450K/EPIC-array associations of cord blood DNA methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with reference to WHO growth charts) was conducted in six European-based child cohorts (ALSPAC, ENVIRONAGE, Generation XXI, INMA, Piccolipiù, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the Bohlin epigenetic clock) with rapid weight growth was also explored via meta-analysis. Follow-up analyses of identified DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in childhood (between 4 and 8 years), and comparison with previous findings. RESULTS Forty-seven CpGs were associated with rapid weight growth at suggestive p-value <1e-05 and, among them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the genome-wide significance level (p-value <1.25e-07). Sixteen differentially methylated regions (DMRs) were identified as associated with rapid weight growth at false discovery rate (FDR)-adjusted/Siddak p-values < 0.01. Gestational age acceleration was associated with decreasing risk of rapid weight growth (p-value = 9.75e-04). Identified DNA methylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs (N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), including long non-coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of CpGs previously reported associated with birthweight. CONCLUSIONS Our findings provide evidence of the association between cord blood DNA methylation and rapid weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportunities for early prevention.
Collapse
Affiliation(s)
- Rossella Alfano
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Daniela Zugna
- Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Henrique Barros
- Institute of Public Health, University of Porto, Porto, Portugal
| | - Mariona Bustamante
- ISGlobal, Institute of Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Akram Ghantous
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Caroline L Relton
- Μedical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Oliver Robinson
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Mohn Centre for Children's Health and Well-being, The School of Public Health, Imperial College London, London, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Augustin Scalbert
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Martine Vrijheid
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Paolo Vineis
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
5
|
Balahmar RM, Ranganathan B, Ebegboni V, Alamir J, Rajakumar A, Deepak V, Sivasubramaniam S. Analyses of selected tumour-associated factors expression in normotensive and preeclamptic placenta. Pregnancy Hypertens 2022; 29:36-45. [PMID: 35717832 DOI: 10.1016/j.preghy.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Human placenta is often considered a controlled-tumour because of shared properties such as invasion and angiogenesis. We assessed the status of a few selected tumour-associated factors (TAFs) in late onset pre-eclamptic (PE) and normotensive (NT) placentae, to understand their involvement in trophoblast invasion. These molecules include aldehyde dehydrogenase (ALDH3A1), aurora kinases (AURK-A/C), platelet derived growth factor receptor-α (PDGFRα), jagged-1 (JAG1) and twist related protein-1 (TWIST1). METHODS The expression of TAF was compared in 13 NT and 11 PE (late onset) placentae using immunoblotting/immunohistochemistry. We then used a novel spheroidal cell model developed from transformed human first trimester trophoblast cell lines HTR8/SVneo and TEV-1 to determine the expression and localization of these six factors during invasion. We also compared the expression of these TAFs during migration and invasion. RESULTS Our results suggest that expressions of ALDH3A1, AURK-A, PDGFRα, and TWIST1 are significantly upregulated in PE placentae (p < 0.05) when compared to NT placentae, whereas AURK-C and JAG1 are down-regulated (p < 0.05). The protein expression pattern of all the six factors were found to be similar in spheroids in comparison to their parental counterparts. The invasive potential of the spheroids was also enhanced when compared with the parental cells. DISCUSSION Collectively, data from our present study suggests that these TAFs are involved in placental invasion and their altered expressions may be regarded as a compensatory mechanism against reduced invasion.
Collapse
Affiliation(s)
- Reham M Balahmar
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Bhuvaneshwari Ranganathan
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Vernon Ebegboni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Jumanah Alamir
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Augustine Rajakumar
- Department of Gynecology & Obstetrics(3), Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Venkataraman Deepak
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| | - Shiva Sivasubramaniam
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| |
Collapse
|
6
|
Shukla V, Høffding MK, Hoffmann ER. Genome diversity and instability in human germ cells and preimplantation embryos. Semin Cell Dev Biol 2021; 113:132-147. [PMID: 33500205 PMCID: PMC8097364 DOI: 10.1016/j.semcdb.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Genome diversity is essential for evolution and is of fundamental importance to human health. Generating genome diversity requires phases of DNA damage and repair that can cause genome instability. Humans have a high incidence of de novo congenital disorders compared to other organisms. Recent access to eggs, sperm and preimplantation embryos is revealing unprecedented rates of genome instability that may result in infertility and de novo mutations that cause genomic imbalance in at least 70% of conceptions. The error type and incidence of de novo mutations differ during developmental stages and are influenced by differences in male and female meiosis. In females, DNA repair is a critical factor that determines fertility and reproductive lifespan. In males, aberrant meiotic recombination causes infertility, embryonic failure and pregnancy loss. Evidence suggest germ cells are remarkably diverse in the type of genome instability that they display and the DNA damage responses they deploy. Additionally, the initial embryonic cell cycles are characterized by a high degree of genome instability that cause congenital disorders and may limit the use of CRISPR-Cas9 for heritable genome editing.
Collapse
Affiliation(s)
- Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Miya Kudo Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
7
|
Kajdy A, Modzelewski J, Cymbaluk-Płoska A, Kwiatkowska E, Bednarek-Jędrzejek M, Borowski D, Stefańska K, Rabijewski M, Torbé A, Kwiatkowski S. Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth. Int J Mol Sci 2021; 22:4186. [PMID: 33919502 PMCID: PMC8072706 DOI: 10.3390/ijms22084186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Abnormally accelerated, premature placental senescence plays a crucial role in the genesis of pregnancy pathologies. Abnormal growth in the third trimester can present as small for gestational age fetuses or fetal growth restriction. One differs from the other by the presence of signs of placental insufficiency and the risk of stillbirth. The majority of stillbirths occur in normally grown fetuses and are classified as "unexplained", which often leads to conclusions that they were unpreventable. The main characteristic of aging is a gradual decline in the function of cells, tissues, and organs. These changes result in the accumulation of senescent cells in mitotic tissues. These cells begin the aging process that disrupts tissues' normal functions by affecting neighboring cells, degrading the extracellular matrix, and reducing tissues' regeneration capacity. Different degrees of abnormal placentation result in the severity of fetal growth restriction and its sequelae, including fetal death. This review aims to present the current knowledge and identify future research directions to understand better placental aging in late fetal growth restriction and unexplained stillbirth. We hypothesized that the final diagnosis of placental insufficiency can be made only using markers of placental senescence.
Collapse
Affiliation(s)
- Anna Kajdy
- Department of Reproductive Health, Centre of Postgraduate Medical Education, Żelazna 90 St., 01-004 Warsaw, Poland; (J.M.); (M.R.)
| | - Jan Modzelewski
- Department of Reproductive Health, Centre of Postgraduate Medical Education, Żelazna 90 St., 01-004 Warsaw, Poland; (J.M.); (M.R.)
| | - Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Magdalena Bednarek-Jędrzejek
- Department Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.-J.); (A.T.)
| | - Dariusz Borowski
- Clinic of Fetal-Maternal, Gynecology and Neonatology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Łukasiewicza 1 St., 85-821 Bydgoszcz, Poland;
| | - Katarzyna Stefańska
- Department of Obstetrics, Medical University of Gdańsk, Mariana Smoluchowskiego 17 St., 80-214 Gdańsk, Poland;
| | - Michał Rabijewski
- Department of Reproductive Health, Centre of Postgraduate Medical Education, Żelazna 90 St., 01-004 Warsaw, Poland; (J.M.); (M.R.)
| | - Andrzej Torbé
- Department Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.-J.); (A.T.)
| | - Sebastian Kwiatkowski
- Department Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.-J.); (A.T.)
| |
Collapse
|