1
|
Wang YN, Chen XL, Yang J, Gong XX, Zhang HF, Zhang YM, Zeng DF, Chen PS, Chen HB. Reduced syncytin-1 regulates trophoblast invasion and apoptosis in preeclampsia. Placenta 2024; 155:32-41. [PMID: 39121585 DOI: 10.1016/j.placenta.2024.07.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/08/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Preeclampsia is a pregnancy-specific disorder characterized by de novo development of hypertension and proteinuria over 20 weeks gestation that has been associated with the dysfunction of trophoblasts. Current evidence suggests that syncytin-1 plays an important role in the non-fusogenic biological activity of trophoblasts, except for specific fusogenic function. However, the underlying mechanism remains unclear. METHODS The expression and location of syncytin-1 in normal and the late-onset preeclampsia placentas were detected by quantitative real-time PCR, western blotting and immunofluorescence. Morphological and apoptosis analysis were processed in placentas. The ex vivo extravillous explant culture model was used to explore the effect of syncytin-1 on EVT outgrowths. Real-time quantitative PCR and immunoblotting were used to calculate syncytin-1 levels in the trophoblast cells before and after syncytin-1 knockdown or overexpression. CCK-8 assay was used to detect the cell viability. TUNEL staining and immunoblotting were processed in trophoblast cells. Transwell assays and wound healing assays were utilize to assess the invasion and migration of trophoblastic cells. Conditional knockout of syncytin-a mouse model was conducted to present the change of placentas in vivo. The ex vivo extravillous explant culture model was used to explore the effect of syncytin-1 on EVT outgrowths. Western blotting was used to identify the key proteins of PI3K/Akt pathways and invasion-related proteins in trophoblast cells. RESULTS AND DISCUSSION Here, reduced syncytin-1 was identified in the late-onset preeclampsia placentas. Reduced syncytin-1 may attenuates the EMT process by promoting apoptosis, inhibiting proliferation and invasion by suppressed PI3K/Akt pathway in trophoblast cells. Our findings provide novel insights into the non-fusogenic biological function of reduced syncytin-1 that may be involves in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shantou University Medical College, China; Department of Histology and Embryology, Shantou University Medical College, China
| | - Xue-Ling Chen
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Ju Yang
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Xing-Xing Gong
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Hai-Feng Zhang
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Yan-Mei Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shantou University Medical College, China
| | - Dan-Feng Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shantou University Medical College, China
| | - Pei-Shan Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shantou University Medical College, China.
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, China
| |
Collapse
|
2
|
Ning J, Yan J, Wang S, Cui Z, Xue Y, Juan J, Yang H. Demethylase FTO-mediated m6A modification of SIK1 modulates placental cytotrophoblast syncytialization in type 2 diabetes mellitus. iScience 2024; 27:109900. [PMID: 38883837 PMCID: PMC11177141 DOI: 10.1016/j.isci.2024.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/24/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents a common complication during pregnancy that affects fetoplacental development. We demonstrated the existence of impaired trophoblast syncytialization under hyperglycemic conditions. However, the exact mechanism remains unknown. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism of mRNA and participates in various biological processes. We described the global m6A modification pattern in T2DM placenta by the combined analysis of methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq). Both the m6A modification and expression of SIK1, which is critical for syncytialization, were significantly decreased in trophoblast exposed to hyperglycemic conditions. In addition, the m6A demethylase fat mass and obesity-associated protein (FTO) affects the expression and mRNA stability of SIK1 by binding to its 3'-untranslated region (UTR) m6A site. This work reveals that the FTO-m6A-SIK1 axis plays critical roles in regulating syncytialization in the placenta.
Collapse
Affiliation(s)
- Jie Ning
- Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
| | - Jie Yan
- Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Shuxian Wang
- Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
| | - Yiwei Xue
- Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
| | - Juan Juan
- Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
| |
Collapse
|
3
|
Priščáková P, Svoboda M, Feketová Z, Hutník J, Repiská V, Gbelcová H, Gergely L. Syncytin-1, syncytin-2 and suppressyn in human health and disease. J Mol Med (Berl) 2023; 101:1527-1542. [PMID: 37855856 PMCID: PMC10697888 DOI: 10.1007/s00109-023-02385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
In this review, we summarized the results of experimental and clinical studies about three human endogenous retroviruses and their products-syncytin-1, syncytin-2, and suppressyn in human physiology and pathophysiology. We summed up the described connection with various pathological processes and diseases, mainly with pregnancy-induced hypertensive diseases such as preeclampsia, oncogenesis, gestational trophoblastic disease, and multiple sclerosis. Supposed mechanisms of action and the potential of clinical applications are also described.
Collapse
Affiliation(s)
- Petra Priščáková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Michal Svoboda
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Zuzana Feketová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Juraj Hutník
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Lajos Gergely
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic.
| |
Collapse
|
4
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|