1
|
Ortega-Jaén D, Mora-Martinez C, Capalbo A, Mifsud A, Boluda-Navarro M, Mercader A, Martín Á, Pardiñas ML, Gil J, de Los Santos MJ. A pilot study of transcriptomic preimplantation genetic testing (PGT-T): towards a new step in embryo selection? Hum Reprod 2024:deae265. [PMID: 39719045 DOI: 10.1093/humrep/deae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/23/2024] [Indexed: 12/26/2024] Open
Abstract
STUDY QUESTION Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data? SUMMARY ANSWER It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity. WHAT IS KNOWN ALREADY Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation. PGT has improved pregnancy rates, but problems persist when high-quality euploid embryos do not reach term. In fact, only around 50-60% implant, of which 10% result in miscarriage. Comprehensive approaches, including RNA-Seq, offer the potential to discover molecular markers of reproductive competence, and could theoretically be combined with extended-embryo culture platforms up to Day 14 that can be utilized as a proxy to study embryo development at post-implantation stages. STUDY DESIGN, SIZE, DURATION This prospective pilot cohort study was conducted from March 2023 to August 2023. A total of 30 vitrified human blastocysts with previous PGT-A diagnosis on Day 5 (D5) or Day 6 (D6) of development were analysed: n = 15 euploid and n = 15 aneuploid. Finally, 21 embryo samples were included in the study; the rest (n = 9) were excluded due to poor quality pre-sequencing data (n = 7) or highly discordant data (n = 2). PARTICIPANTS/MATERIALS, SETTING, METHODS Following warming and re-expansion, embryos underwent a second trophectoderm (TE) biopsy. The embryos were then cultured until day 11 to assess their development. Biopsy analysis by RNA-Seq, studied the differential expressed genes (DEG) to compare embryos which did not or did attach to the plate: unattached embryos (n = 12) versus attached embryos (n = 9). Thus, we also obtained a specific transcriptomic signature of embryos with a "theoretical" capacity for sustained implantation, based on plate attachment on day 11. MAIN RESULTS AND THE ROLE OF CHANCE The digital karyotype obtained by RNA-Seq showed good concordance with the earlier PGT-A data, with a sensitivity of 0.81, a specificity of 0.83, a Cohen's Kappa of 0.66, and an area under the ROC of 0.9. At the gene level, 76 statistically significant DEGs were found in the comparison unattached versus attached embryos (Padj < 0.05; FC > 1). To address the functional implications of these differences, significantly deregulated pathways according to GO and KEGG categories were identified. The mural trophectoderm (TE) of the unattached blastocysts showed 63 significantly deregulated terms, displaying upregulation in autophagy, apoptosis, protein kinase and ubiquitin-like protein ligase activity, and downregulation of ribosome, spliceosome, kinetochore, segregation, and chromosome condensation processes. The overall transcriptomic signature specific to embryos still attached to the plate on day 11 (with a theoretically higher implantation capacity) consists of 501 genes, including: EMP2, AURKB, FOLR1, NOTCH3, LRP2, FZD5, MDH1, APOD, GPX8, COLEC12, HSPA1A, CMTM7, BEX3, which are related to implantation and embryonic development (raw P-value < 0.05; shrunk LFC > 1.1). These findings indicate that it might be possible to identify euploid embryos with a greater capacity for implantation and development, after excluding those embryos that present chromosomal alterations. LIMITATIONS, REASONS FOR CAUTION This study included a small sample size, remarkable variability between samples, and low success rate of RNA amplification. Also, structural chromosomal abnormalities were not included, and it was not possible to diagnose mosaic embryos. TE biopsy does not assure the chromosomal status of the whole embryo. The maximum day for in vitro development was Day 11, and attachment to the plate on this day does not provide a clear indication of implantation capacity and viability, which was not tested in this study. WIDER IMPLICATIONS OF THE FINDINGS The short-term goals following on from this pilot study is to expand the sample size with embryos of more complex abnormalities, and to perform a prospective in vitro preclinical validation. In a more distant future and with optimal results, this technique could have clinical application, thus increasing clinical outcomes by assessing both chromosomal content and transcriptomic profiling. STUDY FUNDING/COMPETING INTEREST(S) The Institut Valencià de Competitivitat Empresarial (IVACE) (IMIDCA/2022/39) and Generalitat Valenciana (CIACIF/2021/11) supported the present study. A.C. is an employee of JUNO Genetics. He has received honoraria for an IBSA lecture and a Merck lecture. He is also a minor shareholder of IVIRMA Global. The other authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- David Ortega-Jaén
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | | | - Antonio Capalbo
- JUNO Genetics-Italy, Reproductive Genetics, Rome, Italy
- Unit of Medical Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Amparo Mifsud
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | | | - Amparo Mercader
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - Ángel Martín
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - María Luisa Pardiñas
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Julia Gil
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - María José de Los Santos
- IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| |
Collapse
|
2
|
Logsdon DM, Ming H, Ezashi T, West RC, Schoolcraft WB, Roberts RM, Jiang Z, Yuan Y. Transcriptome comparisons of trophoblasts from regenerative cell models with peri-implantation human embryos†. Biol Reprod 2024; 111:1000-1016. [PMID: 39109839 DOI: 10.1093/biolre/ioae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024] Open
Abstract
Mechanisms controlling trophoblast (TB) proliferation and differentiation during embryo implantation are poorly understood. Human trophoblast stem cells (TSC) and BMP4/A83-01/PD173074-treated pluripotent stem cell-derived trophoblast cells (BAP) are two widely employed, contemporary models to study TB development and function, but how faithfully they mimic early TB cells has not been fully examined. We evaluated the transcriptomes of TB cells from BAP and TSC and directly compared them with those from peri-implantation human embryos during extended embryo culture (EEC) between embryonic days 8 to 12. The BAP and TSC grouped closely with TB cells from EEC within each TB sublineage following dimensional analysis and unsupervised hierarchical clustering. However, subtle differences in transcriptional programs existed within each TB sublineage. We also validated the presence of six genes in peri-implantation human embryos by immunolocalization. Our analysis reveals that both BAP and TSC models have features of peri-implantation TB s, while maintaining minor transcriptomic differences, and thus serve as valuable tools for studying implantation in lieu of human embryos.
Collapse
Affiliation(s)
- Deirdre M Logsdon
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Toshihiko Ezashi
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Rachel C West
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - William B Schoolcraft
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri-Columbia, MO 65211, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| |
Collapse
|
3
|
Dissanayake K, Godakumara K, Muhandiram S, Kodithuwakku S, Fazeli A. Do extracellular vesicles have specific target cells?; Extracellular vesicle mediated embryo maternal communication. Front Mol Biosci 2024; 11:1415909. [PMID: 39081929 PMCID: PMC11286576 DOI: 10.3389/fmolb.2024.1415909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Extracellular vesicles (EVs) serve as messengers for intercellular communication, yet the precise mechanisms by which recipient cells interpret EV messages remain incompletely understood. In this study, we explored how the origin of EVs, their protein cargo, and the recipient cell type influence the cellular response to EVs within an embryo implantation model. We treated two types of EVs to 6 different recipient cell types and expression of zinc finger protein 81 (ZNF81) gene expression in the recipient cells were quantified using quantitative polymerase chain reaction (qPCR). The proteomic contents of the EV cargos were also analyzed. The results showed that downregulation of the ZNF81 gene was a specific cellular response of receptive endometrial epithelial cells to trophoblast derived EVs. Protein cargo analysis revealed that the proteomic profile of EVs depends on their cell of origin and therefore may affect the recipient cell response to EVs. Furthermore, trophoblastic EVs were found to be specifically enriched with transcription factors such as CTNNB1 (catenin beta-1), HDAC2 (histone deacetylase 2), and NOTCH1 (neurogenic locus notch homolog protein 1), which are known regulators of ZNF81 gene expression. The current study provided compelling evidence supporting the existence of EV specificity, where the characteristics of both the EVs and the recipient cell type collectively contribute to regulating EV target specificity. Additionally, EV protein cargo analysis suggested a potential association between transcription factors and the specific functionality of trophoblastic EVs. This in vitro embryo implantation model and ZNF81 read-out provides a unique platform to study EV specific functionality in natural cell-cell communication.
Collapse
Affiliation(s)
- Keerthie Dissanayake
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kasun Godakumara
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Alireza Fazeli
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Derisoud E, Jiang H, Zhao A, Chavatte-Palmer P, Deng Q. Revealing the molecular landscape of human placenta: a systematic review and meta-analysis of single-cell RNA sequencing studies. Hum Reprod Update 2024; 30:410-441. [PMID: 38478759 PMCID: PMC11215163 DOI: 10.1093/humupd/dmae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/12/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND With increasing significance of developmental programming effects associated with placental dysfunction, more investigations are devoted to improving the characterization and understanding of placental signatures in health and disease. The placenta is a transitory but dynamic organ adapting to the shifting demands of fetal development and available resources of the maternal supply throughout pregnancy. Trophoblasts (cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts) are placental-specific cell types responsible for the main placental exchanges and adaptations. Transcriptomic studies with single-cell resolution have led to advances in understanding the placenta's role in health and disease. These studies, however, often show discrepancies in characterization of the different placental cell types. OBJECTIVE AND RATIONALE We aim to review the knowledge regarding placental structure and function gained from the use of single-cell RNA sequencing (scRNAseq), followed by comparing cell-type-specific genes, highlighting their similarities and differences. Moreover, we intend to identify consensus marker genes for the various trophoblast cell types across studies. Finally, we will discuss the contributions and potential applications of scRNAseq in studying pregnancy-related diseases. SEARCH METHODS We conducted a comprehensive systematic literature review to identify different cell types and their functions at the human maternal-fetal interface, focusing on all original scRNAseq studies on placentas published before March 2023 and published reviews (total of 28 studies identified) using PubMed search. Our approach involved curating cell types and subtypes that had previously been defined using scRNAseq and comparing the genes used as markers or identified as potential new markers. Next, we reanalyzed expression matrices from the six available scRNAseq raw datasets with cell annotations (four from first trimester and two at term), using Wilcoxon rank-sum tests to compare gene expression among studies and annotate trophoblast cell markers in both first trimester and term placentas. Furthermore, we integrated scRNAseq raw data available from 18 healthy first trimester and nine term placentas, and performed clustering and differential gene expression analysis. We further compared markers obtained with the analysis of annotated and raw datasets with the literature to obtain a common signature gene list for major placental cell types. OUTCOMES Variations in the sampling site, gestational age, fetal sex, and subsequent sequencing and analysis methods were observed between the studies. Although their proportions varied, the three trophoblast types were consistently identified across all scRNAseq studies, unlike other non-trophoblast cell types. Notably, no marker genes were shared by all studies for any of the investigated cell types. Moreover, most of the newly defined markers in one study were not observed in other studies. These discrepancies were confirmed by our analysis on trophoblast cell types, where hundreds of potential marker genes were identified in each study but with little overlap across studies. From 35 461 and 23 378 cells of high quality in the first trimester and term placentas, respectively, we obtained major placental cell types, including perivascular cells that previously had not been identified in the first trimester. Importantly, our meta-analysis provides marker genes for major placental cell types based on our extensive curation. WIDER IMPLICATIONS This review and meta-analysis emphasizes the need for establishing a consensus for annotating placental cell types from scRNAseq data. The marker genes identified here can be deployed for defining human placental cell types, thereby facilitating and improving the reproducibility of trophoblast cell annotation.
Collapse
Affiliation(s)
- Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Pascale Chavatte-Palmer
- INRAE, BREED, Université Paris-Saclay, UVSQ, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
5
|
Wang J, Lu X, Zhang W, Liu GH. Endogenous retroviruses in development and health. Trends Microbiol 2024; 32:342-354. [PMID: 37802660 DOI: 10.1016/j.tim.2023.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Endogenous retroviruses (ERVs) are evolutionary remnants of retroviral infections in which the viral genome became embedded as a dormant regulatory element within the host germline. When ERVs become activated, they comprehensively rewire genomic regulatory networks of the host and facilitate critical developmental events, such as preimplantation development and placentation, in a manner specific to species, developmental stage, and tissues. However, accumulating evidence suggests that aberrant ERV transcription compromises genome stability and has been implicated in cellular senescence and various pathogenic processes, underscoring the significance of host genomic surveillance mechanisms. Here, we revisit the prominent functions of ERVs in early development and highlight their emerging roles in mammalian post-implantation development and organogenesis. We also discuss their implications for aging and pathological processes such as microbial infection, immune response. Furthermore, we discuss recent advances in stem-cell-based models, single-cell omics, and genome editing technologies, which serve as beacons illuminating the versatile nature of ERVs in mammalian development and health.
Collapse
Affiliation(s)
- Jichang Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
6
|
Keighley LM, Lynch-Sutherland CF, Almomani SN, Eccles MR, Macaulay EC. Unveiling the hidden players: The crucial role of transposable elements in the placenta and their potential contribution to pre-eclampsia. Placenta 2023; 141:57-64. [PMID: 37301654 DOI: 10.1016/j.placenta.2023.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The human placenta is a vital connection between maternal and fetal tissues, allowing for the exchange of molecules and modulation of immune interactions during pregnancy. Interestingly, some of the placenta's unique functions can be attributed to transposable elements (TEs), which are DNA sequences that have mobilised into the genome. Co-option throughout mammalian evolution has led to the generation of TE-derived regulators and TE-derived genes, some of which are expressed in the placenta but silenced in somatic tissues. TE genes encompass both TE-derived genes with a repeat element in the coding region and TE-derived regulatory regions such as alternative promoters and enhancers. Placental-specific TE genes are known to contribute to the placenta's unique functions, and interestingly, they are also expressed in some cancers and share similar functions. There is evidence to support that aberrant activity of TE genes may contribute to placental pathologies, cancer and autoimmunity. In this review, we highlight the crucial roles of TE genes in placental function, and how their dysregulation may lead to pre-eclampsia, a common and dangerous placental condition. We provide a summary of the functional TE genes in the placenta to offer insight into their significance in normal and abnormal human development. Ultimately, this review highlights an opportunity for future research to investigate the potential dysregulation of TE genes in the development of placental pathologies such as pre-eclampsia. Further understanding of TE genes and their role in the placenta could lead to significant improvements in maternal and fetal health.
Collapse
Affiliation(s)
- Laura M Keighley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
7
|
Gholami Barzoki M, Shatizadeh Malekshahi S, Heydarifard Z, Mahmodi MJ, Soltanghoraee H. The important biological roles of Syncytin-1 of human endogenous retrovirus W (HERV-W) and Syncytin-2 of HERV-FRD in the human placenta development. Mol Biol Rep 2023; 50:7901-7907. [PMID: 37421503 DOI: 10.1007/s11033-023-08658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) entered the germ line by retroviral infection from a distant ancestor over 30 million years ago and constitute 8% of the human genome. The majorities of HERVs are non-protein coding and lack function because of the accumulation of mutations, insertions, deletions, and/or truncations. However, a small number of HERV genes carried ORFs with beneficial functions for the host. METHODS & RESULTS In this review, we summarize the structural and important biological roles of two HERV gene products termed Syncytin-1 and Syncytin-2 in human placenta development. Indeed, two retroviral gene products that have important roles in mammalian development, Syncytin-1 (HERV-W) and Syncytin-2 (HERV-FRD), are prime examples encoded by env genes and expressed in the placental trophoblasts. Several pivotal studies revealed that Syncytins are fundamental genes implicated in regulating trophoblast fusion and placenta morphogenesis. CONCLUSION Interestingly, it has been suggested that syncytins may also be implicated in non-fusogenic activities leading to apoptosis, proliferation, and immunosuppressive activities.
Collapse
Affiliation(s)
- Mehdi Gholami Barzoki
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Zahra Heydarifard
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohamad Javad Mahmodi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Haleh Soltanghoraee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
van Voorden AJ, Keijser R, Veenboer GJM, Lopes Cardozo SA, Diek D, Vlaardingerbroek JA, van Dijk M, Ris-Stalpers C, van Pelt AMM, Afink GB. EP300 facilitates human trophoblast stem cell differentiation. Proc Natl Acad Sci U S A 2023; 120:e2217405120. [PMID: 37406095 PMCID: PMC10334808 DOI: 10.1073/pnas.2217405120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Early placenta development involves cytotrophoblast differentiation into extravillous trophoblast (EVT) and syncytiotrophoblast (STB). Defective trophoblast development and function may result in severe pregnancy complications, including fetal growth restriction and pre-eclampsia. The incidence of these complications is increased in pregnancies of fetuses affected by Rubinstein-Taybi syndrome, a developmental disorder predominantly caused by heterozygous mutations in CREB-binding protein (CREBBP) or E1A-binding protein p300 (EP300). Although the acetyltransferases CREBBP and EP300 are paralogs with many overlapping functions, the increased incidence of pregnancy complications is specific for EP300 mutations. We hypothesized that these complications have their origin in early placentation and that EP300 is involved in that process. Therefore, we investigated the role of EP300 and CREBBP in trophoblast differentiation, using human trophoblast stem cells (TSCs) and trophoblast organoids. We found that pharmacological CREBBP/EP300 inhibition blocks differentiation of TSCs into both EVT and STB lineages, and results in an expansion of TSC-like cells under differentiation-inducing conditions. Specific targeting by RNA interference or CRISPR/Cas9-mediated mutagenesis demonstrated that knockdown of EP300 but not CREBBP, inhibits trophoblast differentiation, consistent with the complications seen in Rubinstein-Taybi syndrome pregnancies. By transcriptome sequencing, we identified transforming growth factor alpha (TGFA, encoding TGF-α) as being strongly upregulated upon EP300 knockdown. Moreover, supplementing differentiation medium with TGF-α, which is a ligand for the epidermal growth factor receptor (EGFR), likewise affected trophoblast differentiation and resulted in increased TSC-like cell proliferation. These findings suggest that EP300 facilitates trophoblast differentiation by interfering with at least EGFR signaling, pointing towards a crucial role for EP300 in early human placentation.
Collapse
Affiliation(s)
- A. Jantine van Voorden
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Remco Keijser
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Geertruda J. M. Veenboer
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Solange A. Lopes Cardozo
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Dina Diek
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Jennifer A. Vlaardingerbroek
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Marie van Dijk
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Carrie Ris-Stalpers
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| | - Gijs B. Afink
- Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|