1
|
Ye XX, Chen YQ, Wu JS, Zhong HQ, Lin B, Huang ML, Fan RH. Biochemical and Transcriptome Analysis Reveals Pigment Biosynthesis Influenced Chlorina Leaf Formation in Anoectochilus roxburghii (Wall.) Lindl. Biochem Genet 2024; 62:1040-1054. [PMID: 37528284 DOI: 10.1007/s10528-023-10432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Anoectochilus roxburghii (Wall.) Lindl is a perennial herb of the Orchidaceae family; a yellow-green mutant and a yellow mutant were obtained from the wild type, thereby providing good material for the study of leaf color variation. Pigment content analysis revealed that chlorophyll, carotenoids, and anthocyanin were lower in the yellow-green and yellow mutants than in the wild type. Transcriptome analysis of the yellow mutant and wild type revealed that 78,712 unigenes were obtained, and 599 differentially expressed genes (120 upregulated and 479 downregulated) were identified. Using the Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (five unigenes) and the chlorophyll metabolic pathway (two unigenes) were identified. Meanwhile, the low expression of the chlorophyll and anthocyanin biosynthetic genes resulted in the absence of chlorophylls and anthocyanins in the yellow mutant. This study provides a basis for similar research in other closely related species.
Collapse
Affiliation(s)
- Xiu-Xian Ye
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Yi-Quan Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Jian-She Wu
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Huai-Qin Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Bing Lin
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Min-Ling Huang
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China.
| | - Rong-Hui Fan
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Cai O, Zhang H, Yang L, Wu H, Qin M, Yao W, Huang F, Li L, Lin S. Integrated Transcriptome and Metabolome Analyses Reveal Bamboo Culm Color Formation Mechanisms Involved in Anthocyanin Biosynthetic in Phyllostachys nigra. Int J Mol Sci 2024; 25:1738. [PMID: 38339012 PMCID: PMC10855043 DOI: 10.3390/ijms25031738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Phyllostachys nigra has green young culms (S1) and purple black mature culms (S4). Anthocyanins are the principal pigment responsible for color presentation in ornamental plants. We employ a multi-omics approach to investigate the regulatory mechanisms of anthocyanins in Ph. nigra. Firstly, we found that the pigments of the culm of Ph. nigra accumulated only in one to four layers of cells below the epidermis. The levels of total anthocyanins and total flavonoids gradually increased during the process of bamboo culm color formation. Metabolomics analysis indicated that the predominant pigment metabolites observed were petunidin 3-O-glucoside and malvidin O-hexoside, exhibiting a significant increase of up to 9.36-fold and 13.23-fold, respectively, during pigmentation of Ph. nigra culm. Transcriptomics sequencing has revealed that genes involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways were significantly enriched, leading to color formation. A total of 62 differentially expressed structural genes associated with anthocyanin synthesis were identified. Notably, PnANS2, PnUFGT2, PnCHI2, and PnCHS1 showed significant correlations with anthocyanin metabolites. Additionally, certain transcription factors such as PnMYB6 and PnMYB1 showed significant positive or negative correlations with anthocyanins. With the accumulation of sucrose, the expression of PnMYB6 is enhanced, which in turn triggers the expression of anthocyanin biosynthesis genes. Based on these findings, we propose that these key genes primarily regulate the anthocyanin synthesis pathway in the culm and contribute to the accumulation of anthocyanin, ultimately resulting in the purple-black coloration of Ph. nigra.
Collapse
Affiliation(s)
- Ou Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hanjiao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Min Qin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Feiyi Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Jiang W, Jiang Q, Shui Z, An P, Shi S, Liu T, Zhang H, Huang S, Jing B, Xiao E, Quan L, Liu J, Wang Z. HaMYBA-HabHLH1 regulatory complex and HaMYBF fine-tune red flower coloration in the corolla of sunflower (Helianthus annuus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111901. [PMID: 37865209 DOI: 10.1016/j.plantsci.2023.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Sunflowers are well-known ornamental plants, while sunflowers with red corolla are rare and the mechanisms underlying red coloration remain unclear. Here, a comprehensive analysis of metabolomics and transcriptomics on flavonoid pathway was performed to investigate the molecular mechanisms underlying the differential color formation between red sunflower Pc103 and two yellow sunflowers (Yr17 and Y35). Targeted metabolomic analysis revealed higher anthocyanin levels but lower flavonol content in Pc103 compared to the yellow cultivars. RNA-sequencing and phylogenetic analysis identified multiple genes involved in the flavonoid pathway, including series of structural genes and three MYB and bHLH genes. Specifically, HaMYBA and HabHLH1 were up-regulated in Pc103, whereas HaMYBF exhibited reduced expression. HaMYBA was found to interact with HabHLH1 in vivo and in vitro, while HaMYBF does not. Transient expression analysis further revealed that HabHLH1 and HaMYBA cooperatively regulate increased expression of dihydroflavonol 4-reductase (DFR), leading to anthocyanin accumulation. On the other hand, ectopic expression of HaMYBF independently modulates flavonol synthase (FLS) expression, but hindered anthocyanin production. Collectively, our findings suggest that the up-regulation of HaMYBA and HabHLH1, as well as the down-regulation of HaMYBF, contribute to the red coloration in Pc103. It offers a theoretical basis for improving sunflower color through genetic engineering.
Collapse
Affiliation(s)
- Wenhui Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China; Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen 518120, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhijie Shui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Peipei An
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shandang Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hanbing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shuyi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Enshi Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Li Quan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jixia Liu
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Li G, Michaelis DF, Huang J, Serek M, Gehl C. New insights into the genetic manipulation of the R2R3-MYB and CHI gene families on anthocyanin pigmentation in Petunia hybrida. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108000. [PMID: 37683585 DOI: 10.1016/j.plaphy.2023.108000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Several R2R3-MYB genes control anthocyanin pigmentation in petunia, and ANTHOCYANIN-2 (AN2) is treated as the main player in petal limbs. However, the actual roles of R2R3-MYBs in the coloration of different floral tissues in the so called "darkly-veined" petunias are still not clear. The genetic background and expression of AN2 paralogs from various petunias with different color patterns were identified. All "darkly-veined" genotypes have the identical mutation in the AN2 gene, but express a different functional paralog - ANTHOCYANIN-4 (AN4) - abundantly in flowers. Constitutive overexpression of PhAN4 in this petunia resulted not only in a fully colored flower but also in a clearly visible pigmentation in the green tissue and roots, which can be rapidly increased by stress conditions. Suppression of AN4 gene resulted in discolored petals and whitish anthers. Interestingly, when a similar white flower phenotype was achieved by knockout of an essential structural gene of anthocyanin biosynthesis - CHALCONE ISOMERASE-A (CHI-A) - the plant responded directly by upregulating of another paralogs - DEEP PURPLE (DPL) and PURPLE HAZE (PHZ). Moreover, we also found that CHI-B can partially substitute for CHI-A in anthers, but not in vegetative tissues. Further, no significant effects on the longevity of white or enhanced colored flowers were observed compared with the wild type. We concluded that endogenous up-regulation of AN4 leads to the restoration of petal color in the "darkly-veined" phenotypes as a result of the breeding process under human selection, and CHI-B is a backup for CHI-A acitvity in some floral tissues.
Collapse
Affiliation(s)
- Guo Li
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Dietz Felix Michaelis
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Junjie Huang
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Margrethe Serek
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Christian Gehl
- Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
5
|
Fairnie ALM, Yeo MTS, Gatti S, Chan E, Travaglia V, Walker JF, Moyroud E. Eco-Evo-Devo of petal pigmentation patterning. Essays Biochem 2022; 66:753-768. [PMID: 36205404 PMCID: PMC9750854 DOI: 10.1042/ebc20220051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Colourful spots, stripes and rings decorate the corolla of most flowering plants and fulfil important biotic and abiotic functions. Spatial differences in the pigmentation of epidermal cells can create these patterns. The last few years have yielded new data that have started to illuminate the mechanisms controlling the function, formation and evolution of petal patterns. These advances have broad impacts beyond the immediate field as pigmentation patterns are wonderful systems to explore multiscale biological problems: from understanding how cells make decisions at the microscale to examining the roots of biodiversity at the macroscale. These new results also reveal there is more to petal patterning than meets the eye, opening up a brand new area of investigation. In this mini-review, we summarise our current knowledge on the Eco-Evo-Devo of petal pigmentation patterns and discuss some of the most exciting yet unanswered questions that represent avenues for future research.
Collapse
Affiliation(s)
- Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| | - Stefano Gatti
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Emily Chan
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Valentina Travaglia
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| |
Collapse
|
6
|
Yu C, Dong Z, Jemaa E, Zhu Z, Mo R, Li Y, Deng W, Hu X, Zhang C, Han G. A Feature Selection Approach Guided an Early Prediction of Anthocyanin Accumulation Using Massive Untargeted Metabolomics Data in Mulberry. PLANT & CELL PHYSIOLOGY 2022; 63:671-682. [PMID: 35247053 DOI: 10.1093/pcp/pcac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Identifying the early predictive biomarkers or compounds represents a pivotal task for guiding a targeted agricultural practice. Despite the various available tools, it remains challenging to define the ideal compound combination and thereby elaborate an effective predictive model fitting that. Hence, we employed a stepwise feature selection approach followed by a maximum relevance and minimum redundancy (MRMR) on the untargeted metabolism in four mulberry genotypes at different fruit developmental stages (FDSs). Thus, we revealed that 7 out of 226 differentially abundant metabolites (DAMs) explained up to 80% variance of anthocyanin based on linear regression model and stepwise feature selection approach accompanied by an MRMR across the genotypes over the FDSs. Among them, the phosphoenolpyruvate, d-mannose and shikimate show the top 3 attribution indexes to the accumulation of anthocyanin in the fruits of these genotypes across the four FDSs. The obtained results were further validated by assessing the regulatory genes expression levels and the targeted metabolism approach. Taken together, our findings provide valuable evidences on the fact that the anthocyanin biosynthesis is somehow involved in the coordination between the carbon metabolism and secondary metabolic pathway. Our report highlights as well the importance of using the feature selection approach for the predictive biomarker identification issued from the untargeted metabolomics data.
Collapse
Affiliation(s)
- Cui Yu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| | - Zhaoxia Dong
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| | - Essemine Jemaa
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhixian Zhu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| | - Rongli Mo
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| | - Yong Li
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| | - Wen Deng
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| | - Xingming Hu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| | - Cheng Zhang
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| | - Guangming Han
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, 43 Nanhu Road, Hongshan District, Wuhan, Hubei 430064, China
| |
Collapse
|
7
|
Ohta Y, Atsumi G, Yoshida C, Takahashi S, Shimizu M, Nishihara M, Nakatsuka T. Post-transcriptional gene silencing of the chalcone synthase gene CHS causes corolla lobe-specific whiting of Japanese gentian. PLANTA 2021; 255:29. [PMID: 34964920 DOI: 10.1007/s00425-021-03815-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Post-transcriptional gene silencing of the chalcone synthase gene CHS specifically suppresses anthocyanin biosynthesis in corolla lobes and is responsible for the formation of a stripe type bicolor in Japanese gentian. The flower of Japanese gentian is a bell-shaped corolla composed of lobes and plicae, which is painted uniformly blue. However, the gentian cultivar 'Hakuju' shows bicolor phenotype (blue-white stripe corolla), in which anthocyanin accumulation is suppressed only in corolla lobes. Expression analysis indicated that steady-state levels of chalcone synthase (CHS) transcripts were remarkably reduced in corolla lobes compared with plicae during petal pigmentation initiation. However, no significant difference in expression levels of other flavonoid biosynthetic structural and regulatory genes was detected in its lobes and plicae. On feeding naringenin in white lobes, anthocyanin accumulation was recovered. Northern blotting probed with CHS confirmed the abundant accumulation of small RNAs in corolla lobes. Likewise, small RNA-seq analysis indicated that short reads from its lobes were predominantly mapped onto the 2nd exon region of the CHS gene, whereas those from the plicae were scarcely mapped. Subsequent infection with the gentian ovary ringspot virus (GORV), which had an RNA-silencing activity, showed the recovery of partial pigmentation in lobes. Hence, these results strongly suggested that suppressing anthocyanin accumulation in the lobes of bicolored 'Hakuju' was attributed to the specific degradation of CHS mRNA in corolla lobes, which was through post-transcriptional gene silencing (PTGS). Herein, we revealed the molecular mechanism of strip bicolor formation in Japanese gentian, and showed that PTGS of CHS was also responsible for flower color pattern in a floricultural plant other than petunia and dahlia.
Collapse
Affiliation(s)
- Yuka Ohta
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Go Atsumi
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517, Japan
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Takashi Nakatsuka
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
8
|
Zhang B, Xu X, Huang R, Yang S, Li M, Guo Y. CRISPR/Cas9-mediated targeted mutation reveals a role for AN4 rather than DPL in regulating venation formation in the corolla tube of Petunia hybrida. HORTICULTURE RESEARCH 2021; 8:116. [PMID: 34059660 PMCID: PMC8166957 DOI: 10.1038/s41438-021-00555-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 05/11/2023]
Abstract
Venation is a common anthocyanin pattern displayed in flowers that confers important ornamental traits to plants. An anthocyanin-related R2R3-MYB transcription factor, DPL, has been proposed to regulate corolla tube venation in petunia plants. Here, however, we provide evidence redefining the role of DPL in petunia. A CRISPR/Cas9-mediated mutation of DPL resulted in the absence of the vein-associated anthocyanin pattern above the abaxial surface of the flower bud, but not corolla tube venation, thus indicating that DPL did not regulate the formation of corolla tube venation. Alternately, quantitative real-time PCR analysis demonstrated that the spatiotemporal expression pattern of another R2R3-MYB gene, AN4, coincided with the formation of corolla tube venation in petunia. Furthermore, overexpression of AN4 promoted anthocyanin accumulation by increasing the expression of anthocyanin biosynthesis genes. CRISPR/Cas9-mediated mutation of AN4 led to an absence of corolla tube venation, suggesting that this gene in fact determines this key plant trait. Taken together, the results presented here redefine the prime regulator of corolla tube venation, paving the way for further studies on the molecular mechanisms underlying the various venation patterns in petunia.
Collapse
Affiliation(s)
- Bin Zhang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China
- College of Agriculture, Guizhou University, 550025, Guiyang, Guizhou, China
| | - Xiaojing Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China
| | - Renwei Huang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, 611130, Chengdu, China
| | - Sha Yang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China.
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
9
|
Qi Y, Wei H, Gu W, Shi W, Jiang L, Deng L, Liu X. Transcriptome profiling provides insights into the fruit color development of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. PROTOPLASMA 2021; 258:33-43. [PMID: 32886216 DOI: 10.1007/s00709-020-01542-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Lycium ruthenicum Murr. is an important ecological and economic species in the Qaidam Basin of Qinghai-Tibet Plateau. Its black fruits (BF) are rich in anthocyanins, which have health-promoting properties for humans and thus provide nutritional benefits for this plant. Although the fruit quality of natural white fruit (WF) is affected by the disappearance of pigmentation in phenotypes, this phenomenon provides an opportunity to unravel the complex color metabolic networks. In this study, anthocyanin profiling confirmed that WF was formed due to anthocyanin loss. Transcriptome analysis of BF and WF revealed 101,466 unigenes, 261 of which were identified as the putative homologs of color-related genes in other species. Genes encoding the enzymes involved in flavonoid biosynthesis were also identified systematically. The structural gene expression levels of chalcone synthase (CHS), chalcone isomerase (CHI), flavonoid 3'5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and anthocyanidin 3-O-glucosyltransferase (UFGT) were highly similar and significantly positively correlated with anthocyanin accumulation rate in BF. In particular, F3'5'H, UFGT, ANS, and DFR expression levels in BF were 2391, 119, 96, and 85 times higher than those in WF at S3 (35 days after anthesis), respectively. This result strongly suggests that the low expression of these genes in WF is responsible for the anthocyanin loss. Meanwhile, the expression patterns of the anthocyanin regulatory genes were also investigated by qRT-PCR. Mass sequencing data were obtained and annotated by deep sequencing and provided a platform for future function and molecular biological research on L. ruthenicum Murr.
Collapse
Affiliation(s)
- Yinyan Qi
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Haibin Wei
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Wenyi Gu
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Wenjun Shi
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Liling Jiang
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Lei Deng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China
| | - Xiaoli Liu
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining, 810016, Qinghai, China.
| |
Collapse
|
10
|
Lin RC, Rausher MD. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae). THE NEW PHYTOLOGIST 2021; 229:1147-1162. [PMID: 32880946 DOI: 10.1111/nph.16908] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Petal pigmentation patterning is widespread in flowering plants. The genetics of these pattern elements has been of great interest for understanding the evolution of phenotypic diversification. Here, we investigate the genetic changes responsible for the evolution of an unpigmented petal element on a colored background. We used transcriptome analysis, gene expression assays, cosegregation in F2 plants and functional tests to identify the gene(s) involved in petal coloration in Clarkia gracilis ssp. sonomensis. We identified an R2R3-MYB transcription factor (CgsMYB12) responsible for anthocyanin pigmentation of the basal region ('cup') in the petal of C. gracilis ssp. sonomensis. A functional mutation in CgsMYB12 creates a white cup on a pink petal background. Additionally, we found that two R2R3-MYB genes (CgsMYB6 and CgsMYB11) are also involved in petal background pigmentation. Each of these three R2R3-MYB genes exhibits a different spatiotemporal expression pattern. The functionality of these R2R3-MYB genes was confirmed through stable transformation of Arabidopsis. Distinct spatial patterns of R2R3-MYB expression have created the possibility that pigmentation in different sections of the petal can evolve independently. This finding suggests that recent gene duplication has been central to the evolution of petal pigmentation patterning in C. gracilis ssp. sonomensis.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
11
|
Zhou Z, Ying Z, Wu Z, Yang Y, Fu S, Xu W, Yao L, Zeng A, Huang J, Lan S, Wang X, Liu Z. Anthocyanin Genes Involved in the Flower Coloration Mechanisms of Cymbidium kanran. FRONTIERS IN PLANT SCIENCE 2021; 12:737815. [PMID: 34712257 PMCID: PMC8545884 DOI: 10.3389/fpls.2021.737815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/07/2021] [Indexed: 05/13/2023]
Abstract
The Orchidaceae, otherwise known as orchids, is one of the largest plant families and is renowned for its spectacular flowers and ecological adaptations. Various polymorphisms of orchid flower colour can attract pollinators and be recognised as valuable horticultural ornamentals. As one of the longest historic cultured orchids, Cymbidium kanran has been domesticated for more than 2,500 years and is an ideal species to study coloration mechanisms because of plentiful variations in floral coloration and abundant traditional varieties. In this study, we used two distinct colour-type flowers of C. kanran as experimental materials to elucidate the mechanism of flower coloration. High-performance liquid chromatography (HPLC) analysis revealed that anthocyanins in purple-red-type flowers include three types of anthocyanidin aglycones, peonidin, malvidin, and cyanidin, whereas anthocyanins are lacking in white-type flowers. Through comparative transcriptome sequencing, 102 candidate genes were identified as putative homologues of colour-related genes. Based on comprehensive correlation analysis between colour-related compounds and gene expression profiles, four candidates from 102 captured genes showed a positive correlation with anthocyanidin biosynthesis. Furthermore, transient expression of CkCHS-1, CkDFR, and CkANS by particle bombardment confirmed that recovery of their expression completed the anthocyanin pathway and produced anthocyanin compounds in white-type flowers. Collectively, this study provided a comprehensive transcriptomic dataset for Cymbidium, which significantly facilitate our understanding of the molecular mechanisms of regulating floral pigment accumulation in orchids.
Collapse
Affiliation(s)
- Zhuang Zhou
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zhen Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zhigang Wu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Yanping Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Shuangbin Fu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Lijuan Yao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Aiping Zeng
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Jian Huang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaole Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
- *Correspondence: Xiaole Wang
| | - Zhongjian Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
- Zhongjian Liu
| |
Collapse
|
12
|
Yamagishi M, Sakai M. The MicroRNA828/MYB12 Module Mediates Bicolor Pattern Development in Asiatic Hybrid Lily ( Lilium spp.) Flowers. FRONTIERS IN PLANT SCIENCE 2020; 11:590791. [PMID: 33193545 PMCID: PMC7661471 DOI: 10.3389/fpls.2020.590791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/08/2020] [Indexed: 05/06/2023]
Abstract
Some Asiatic hybrid lily cultivars develop bicolor tepals, which consist of anthocyanin-pigmented upper halves and un-pigmented lower halves. MYB12, a subgroup 6 member of R2R3-MYB that positively regulates anthocyanin biosynthesis, is downregulated in the lower halves. However, MYB12 is usually expressed over entire tepal regions in numerous lily cultivars. Why MYB12 of bicolor cultivars exhibits variable expression spatially in a single tepal remains unclear. Since the lily MYB12 mRNA harbored a binding site for microRNA828 (miR828), the involvement of miR828 in variable spatial accumulation of MYB12 transcripts was evaluated. We analyzed the cleavage of MYB12 mRNA, mature miR828 accumulation, and MYB12 transcript-derived siRNA generation (microRNA-seq). In the bicolor tepals, mature miR828 was more highly accumulated in the lower halves than in the upper halves, and miR828-directed cleavage of MYB12 transcripts was observed predominantly in the lower halves. Moreover, the cleavage triggered the production of secondary siRNA from MYB12 transcripts, and the siRNAs were accumulated predominantly in the lower halves. Consequently, miR828 suppressed MYB12 transcript accumulation in the white region, and the miR828/MYB12 module participated in the development of bicolor patterns in lily flowers. The results present the first example of a microRNA mediating flower color patterns. Finally, we discuss the potential of miR828 creating flower color variations through suppressing the activity of subgroup 6 R2R3-MYB positive regulators in other species.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
13
|
The Regulation of Floral Colour Change in Pleroma raddianum (DC.) Gardner. Molecules 2020; 25:molecules25204664. [PMID: 33066182 PMCID: PMC7587386 DOI: 10.3390/molecules25204664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/03/2022] Open
Abstract
Floral colour change is a widespread phenomenon in angiosperms, but poorly understood from the genetic and chemical point of view. This article investigates this phenomenon in Pleroma raddianum, a Brazilian endemic species whose flowers change from white to purple. To this end, flavonoid compounds and their biosynthetic gene expression were profiled. By using accurate techniques (Ultra Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UPLC-HRMS)), thirty phenolic compounds were quantified. Five key genes of the flavonoid biosynthetic pathway were partially cloned, sequenced, and the mRNA levels were analysed (RT-qPCR) during flower development. Primary metabolism was also investigated by gas chromatography coupled to mass spectrometry (GC-EIMS), where carbohydrates and organic acids were identified. Collectively, the obtained results suggest that the flower colour change in P. raddianum is determined by petunidin and malvidin whose accumulation coincides with the transcriptional upregulation of early and late biosynthetic genes of the flavonoid pathway, mainly CHS and ANS, respectively. An alteration in sugars, organic acids and phenolic co-pigments is observed together with the colour change. Additionally, an increment in the content of Fe3+ ions in the petals, from the pink to purple stage, seemed to influence the saturation of the colour.
Collapse
|
14
|
Yin X, Lin X, Liu Y, Irfan M, Chen L, Zhang L. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in diverse petal tissues in the lily cultivar 'Vivian'. BMC PLANT BIOLOGY 2020; 20:446. [PMID: 32993487 PMCID: PMC7526134 DOI: 10.1186/s12870-020-02658-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/23/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Petals are the colorful region of many ornamental plants. Quality traits of petal color directly affect the value of ornamental plants. Although the regulatory mechanism of flower color has been widely studied in many plants, that of lily flower color is still worth further exploration. RESULTS In this study, the pigmentation regulatory network in different regions of the petal of lily cultivar 'Vivian' was analyzed through tissue structure, metabolites biosynthesis, and gene expression. We found that cell morphology of the petal in un-pigmented region differed from that in pigmented region. The cell morphology tends to flatten in un-pigmented region where the color is lighter. Moreover, high level anthocyanin was found in the pigmented regions by metabonomic analysis, especially cyanidin derivatives. However, flavanones were accumulated, contrast with anthocyanin in the un-pigmented regions of lily petal. To understand the relationship of these different metabolites and lily flower color, RNA-Seq was used to analyze the differentially expressed genes-related metabolite biosynthesis. Among these genes, the expression levels of several genes-related cyanidin derivatives biosynthesis were significantly different between the pigmented and un-pigmented regions, such as LvMYB5, LvMYB7, LvF3'H, LvDFR, LvANS and Lv3GT. CONCLUSIONS This data will help us to further understand the regulation network of lily petal pigmentation and create different unique color species.
Collapse
Affiliation(s)
- Xiaojuan Yin
- College of Horticulture, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinyue Lin
- College of Horticulture, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yuxuan Liu
- College of Horticulture, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- College of Horticulture, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Li Zhang
- College of Horticulture, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
15
|
Diaconeasa Z, Știrbu I, Xiao J, Leopold N, Ayvaz Z, Danciu C, Ayvaz H, Stǎnilǎ A, Nistor M, Socaciu C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020; 8:E336. [PMID: 32916849 PMCID: PMC7555344 DOI: 10.3390/biomedicines8090336] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins' preventative and inhibitory effects, underlying molecular mechanisms, and such. However, there is no targeted review available regarding the anticarcinogenic effects of dietary anthocyanins on skin cancers. If diagnosed at the early stages, the survival rate of skin cancer is quite high. Nevertheless, the metastatic form has a short prognosis. In fact, the incidence of melanoma skin cancer, the type with high mortality, has increased exponentially over the last 30 years, causing the majority of skin cancer deaths. Malignant melanoma is considered a highly destructive type of skin cancer due to its particular capacity to grow and spread faster than any other type of cancers. Plants, in general, have been used in disease treatment for a long time, and medicinal plants are commonly a part of anticancer drugs on the market. Accordingly, this work primarily aims to emphasize the most recent improvements on the anticarcinogenic effects of anthocyanins from different plant sources, with an in-depth emphasis on melanoma skin cancer. We also briefly summarized the anthocyanin chemistry, their rich dietary sources in flowers, fruits, and vegetables, as well as their associated potential health benefits. Additionally, the importance of anthocyanins in topical applications such as their use in cosmetics is also given.
Collapse
Affiliation(s)
- Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ioana Știrbu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 999078, China;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Zayde Ayvaz
- Faculty of Marine Science and Technology, Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey;
| | - Corina Danciu
- Victor Babes University of Medicine and Pharmacy, Department of Pharmacognosy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Huseyin Ayvaz
- Department of Food Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey;
| | - Andreea Stǎnilǎ
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Mǎdǎlina Nistor
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
16
|
Huang G, Zeng Y, Wei L, Yao Y, Dai J, Liu G, Gui Z. Comparative transcriptome analysis of mulberry reveals anthocyanin biosynthesis mechanisms in black (Morus atropurpurea Roxb.) and white (Morus alba L.) fruit genotypes. BMC PLANT BIOLOGY 2020; 20:279. [PMID: 32552771 PMCID: PMC7301479 DOI: 10.1186/s12870-020-02486-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/09/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND To gain a better understanding of anthocyanin biosynthesis in mulberry fruit, we analyzed the transcriptome of the mulberry varieties Da 10 (Morus atropurpurea Roxb., black fruit) and Baisang (Morus alba L., white fruit). RESULTS We found that whereas Da 10 had high levels of cyanidin 3-O-glucoside (Cy), and pelargonidin 3-O-glucoside (Pg), Baisang contained only Cy, at low levels. Based on a comparative transcriptome analysis, we annotated more than 27,085 genes (including 1735 new genes). Genes that were differentially expressed between Da 10 and Baisang were detected at three stages of fruit development: S1 [4256 genes, 10 days post-anthesis (DPA)], S2 (5612 genes, 19 DPA), and S3 (5226 genes, 28 DPA). Anthocyanin biosynthesis was found to be associated with the expression of 15 core genes and 5 transcription factors. Relative to Baisang, Da 10 showed a significant upregulation of genes involved in the early stages (production of the intermediate compounds chalcone and dihydroflavonol) and late stages (production of Cy and Pg) of anthocyanin biosynthesis. Baisang showed a significant downregulation of the genes involved in the early stages of anthocyanin biosynthesis and overexpression of flavanone 3-hydroxylase (FLS), resulting in the generation of quercetin and/or myricetin but not anthocyanins. CONCLUSIONS The biosynthesis of anthocyanin in mulberry fruit is initiated from the precursor, phenylalanine, and mediated by the upregulation of dihydroflavonol 4-reductase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase, and cyanidin-3-O-glucoside 2-O-glucuronosyltransferase, and downregulation of FLS to produce Cy and Pg.
Collapse
Affiliation(s)
- Gaiqun Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Yichun Zeng
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Ling Wei
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Yongquan Yao
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jie Dai
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Gang Liu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212003, Jiangsu, China.
| |
Collapse
|
17
|
Skaliter O, Ravid J, Shklarman E, Ketrarou N, Shpayer N, Ben Ari J, Dvir G, Farhi M, Yue Y, Vainstein A. Ectopic Expression of PAP1 Leads to Anthocyanin Accumulation and Novel Floral Color in Genetically Engineered Goldenrod ( Solidago canadensis L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1561. [PMID: 31827486 PMCID: PMC6890609 DOI: 10.3389/fpls.2019.01561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/07/2019] [Indexed: 05/29/2023]
Abstract
Floral pigmentation is of major importance to the ornamental industry, which is constantly searching for cultivars with novel colors. Goldenrod (Solidago canadensis) has monochromatic yellow carotenoid-containing flowers that cannot be modified using classical breeding approaches due to a limited gene pool. To generate Solidago with novel colors through metabolic engineering, we first developed a procedure for its regeneration and transformation. Applicability of different cytokinins for adventitious regeneration was examined in the commercial cv. Tara, with zeatin yielding higher efficiency than 6-benzylaminopurine or thidiazuron. A comparison of regeneration of commercial cvs. Tara, Golden Glory and Ivory Glory revealed Tara to be the most potent, with an efficiency of 86% (number of shoots per 100 leaf explants). Agrobacterium-based transformation efficiency was highest for cv. Golden Glory (5 independent transgenic shoots per 100 explants) based on kanamycin selection and the GUS reporter gene. In an attempt to promote anthocyanin biosynthesis, we generated transgenic Solidago expressing snapdragon (Antirrhinum majus) Rosea1 and Delila, as well as Arabidopsis thaliana PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) transcription factors. Transgenic cv. Golden Glory expressing cauliflower mosaic virus 35S-driven PAP1 generated red flowers that accumulated delphinidin and its methylated derivatives, as compared to control yellow flowers in the GUS-expressing plants. The protocol described here allows efficient engineering of Solidago for novel coloration and improved agricultural traits.
Collapse
Affiliation(s)
- Oded Skaliter
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jasmin Ravid
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elena Shklarman
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nadav Ketrarou
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Shpayer
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Julius Ben Ari
- The Laboratory for Mass Spectrometry and Chromatography, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gony Dvir
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Moran Farhi
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuling Yue
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander Vainstein
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
18
|
Xue L, Wang J, Zhao J, Zheng Y, Wang HF, Wu X, Xian C, Lei JJ, Zhong CF, Zhang YT. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. BMC PLANT BIOLOGY 2019; 19:423. [PMID: 31610785 PMCID: PMC6791029 DOI: 10.1186/s12870-019-2048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/20/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pink-flowered strawberry is a promising new ornamental flower derived from intergeneric hybridization (Fragaria × Potentilla) with bright color, a prolonged flowering period and edible fruits. Its flower color ranges from light pink to red. Pigment compounds accumulated in its fruits were the same as in cultivated strawberry fruits, but different from that in its flowers. However, the transcriptional events underlying the anthocyanin biosynthetic pathway have not been fully characterized in petal coloration. To gain insights into the regulatory networks related to anthocyanin biosynthesis and identify the key genes, we performed an integrated analysis of the transcriptome and metabolome in petals of pink-flowered strawberry. RESULTS The main pigments of red and dark pink petals were anthocyanins, among which cyanidins were the main compound. There were no anthocyanins detected in the white-flowered hybrids. A total of 50,285 non-redundant unigenes were obtained from the transcriptome databases involved in red petals of pink-flowered strawberry cultivar Sijihong at three development stages. Amongst the unigenes found to show significant differential expression, 57 were associated with anthocyanin or other flavonoid biosynthesis, in which they were regulated by 241 differentially expressed members of transcription factor families, such as 40 MYBs, 47 bHLHs, and 41 NACs. Based on a comprehensive analysis relating pigment compounds to gene expression profiles, the mechanism of flower coloration was examined in pink-flowered strawberry. A new hypothesis was proposed to explain the lack of color phenotype of the white-flowered strawberry hybrids based on the transcriptome analysis. The expression patterns of FpDFR and FpANS genes corresponded to the accumulation patterns of cyanidin contents in pink-flowered strawberry hybrids with different shades of pink. Moreover, FpANS, FpBZ1 and FpUGT75C1 genes were the major factors that led to the absence of anthocyanins in the white petals of pink-flowered strawberry hybrids. Meanwhile, the competitive effect of FpFLS and FpDFR genes might further inhibit anthocyanin synthesis. CONCLUSIONS The data presented herein are important for understanding the molecular mechanisms underlying the petal pigmentation and will be powerful for integrating novel potential target genes to breed valuable pink-flowered strawberry cultivars.
Collapse
Affiliation(s)
- Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Jun Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Yang Zheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Hai-Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Xue Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Cheng Xian
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Jia-Jun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Chuan-Fei Zhong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093 China
| | - Yun-Tao Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093 China
| |
Collapse
|
19
|
Ban Y, Morita Y, Ogawa M, Higashi K, Nakatsuka T, Nishihara M, Nakayama M. Inhibition of post-transcriptional gene silencing of chalcone synthase genes in petunia picotee petals by fluacrypyrim. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1513-1523. [PMID: 30690559 DOI: 10.1093/jxb/erz009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
In petals of picotee petunia (Petunia hybrida) cultivars, margin-specific post-transcriptional gene silencing (PTGS) of chalcone synthase A (CHSA) inhibits anthocyanin biosynthesis, resulting in marginal white tissue formation. In this study, we found that a low molecular mass compound, fluacrypyrim, inhibits PTGS of CHSA, and we explored the site-specific PTGS mechanism of operation. Fluacrypyrim treatment abolished the picotee pattern and eliminated site-specific differences in the levels of anthocyanin-related compounds, CHSA expression, and CHSA small interfering RNA (siRNA). In addition, fluacrypyrim abolished the petunia star-type pattern, which is also caused by PTGS of CHSA. Fluacrypyrim treatment was effective only at the early floral developmental stage and predominantly eliminated siRNA derived from CHS genes; i.e. siRNA derived from other genes remained at a comparable level. Fluacrypyrim probably targets the induction of PTGS that specifically operates for CHS genes in petunia picotee flowers, rather than common PTGS maintenance mechanisms that degrade mRNAs and generate siRNA. Upon treatment, the proportion of colored tissue increased due to a shift of the border between white and colored sites toward the margin in a time- and dose-dependent manner. These findings imply that the fluacrypyrim-targeted PTGS induction is completed gradually and its strength is attenuated from the margins to the center of petunia picotee petals.
Collapse
Affiliation(s)
- Yusuke Ban
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Western Region Agricultural Research Center, NARO, Fukuyama, Hiroshima, Japan
| | - Yasumasa Morita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Experimental Farm, Faculty of Agriculture, Meijo University, Kasugai, Aichi, Japan
| | - Mika Ogawa
- Teikyo University of Science, Adachi, Tokyo, Japan
| | | | - Takashi Nakatsuka
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Shizuoka, Japan
| | | | - Masayoshi Nakayama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Morita Y, Hoshino A. Recent advances in flower color variation and patterning of Japanese morning glory and petunia. BREEDING SCIENCE 2018; 68:128-138. [PMID: 29681755 PMCID: PMC5903981 DOI: 10.1270/jsbbs.17107] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/21/2017] [Indexed: 05/17/2023]
Abstract
The Japanese morning glory (Ipomoea nil) and petunia (Petunia hybrida), locally called "Asagao" and "Tsukubane-asagao", respectively, are popular garden plants. They have been utilized as model plants for studying the genetic basis of floricultural traits, especially anthocyanin pigmentation in flower petals. In their long history of genetic studies, many mutations affecting flower pigmentation have been characterized, and both structural and regulatory genes for the anthocyanin biosynthesis pathway have been identified. In this review, we will summarize recent advances in the understanding of flower pigmentation in the two species with respect to flower hue and color patterning. Regarding flower hue, we will describe a novel enhancer of flavonoid production that controls the intensity of flower pigmentation, new aspects related to a flavonoid glucosyltransferase that has been known for a long time, and the regulatory mechanisms of vacuolar pH being a key determinant of red and blue coloration. On color patterning, we describe particular flower patterns regulated by epigenetic and RNA-silencing mechanisms. As high-quality whole genome sequences of the Japanese morning glory and petunia wild parents (P. axillaris and P. inflata, respectively) were published in 2016, further study on flower pigmentation will be accelerated.
Collapse
Affiliation(s)
- Yasumasa Morita
- Faculty of Agriculture, Meijo University,
Kasugai, Aichi 486-0804,
Japan
- Corresponding author (e-mail: )
| | - Atsushi Hoshino
- National Institute for Basic Biology,
Okazaki, Aichi 444-8585,
Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies),
Okazaki, Aichi 444-8585,
Japan
| |
Collapse
|
21
|
Yang M, Li J, Ye C, Liang H. Characterization and expression analysis of a chalcone isomerase-like gene in relation to petal color of Actinidia chrysantha. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Wani TA, Pandith SA, Gupta AP, Chandra S, Sharma N, Lattoo SK. Molecular and functional characterization of two isoforms of chalcone synthase and their expression analysis in relation to flavonoid constituents in Grewia asiatica L. PLoS One 2017; 12:e0179155. [PMID: 28662128 PMCID: PMC5491003 DOI: 10.1371/journal.pone.0179155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
Chalcone synthase constitutes a functionally diverse gene family producing wide range of flavonoids by catalyzing the initial step of the phenylpropanoid pathway. There is a pivotal role of flavonoids in pollen function as they are imperative for pollen maturation and pollen tube growth during sexual reproduction in flowering plants. Here we focused on medicinally important fruit-bearing shrub Grewia asiatica. It is a rich repository of flavonoids. The fruits are highly acclaimed for various putative health benefits. Despite its importance, full commercial exploitation is hampered due to two drawbacks which include short shelf life of its fruits and larger seed volume. To circumvent these constraints, seed abortion is one of the viable options. Molecular interventions tested in a number of economic crops have been to impair male reproductive function by disrupting the chalcone synthase (CHS) gene activity. Against this backdrop the aim of the present study included cloning and characterization of two full-length cDNA clones of GaCHS isoforms from the CHS multigene family. These included GaCHS1 (NCBI acc. KX129910) and GaCHS2 (NCBI acc. KX129911) with an ORF of 1176 and 1170 bp, respectively. GaCHSs were heterologously expressed and purified in E. coli to validate their functionality. Functionality of CHS isoforms was also characterized via enzyme kinetic studies using five different substrates. We observed differential substrate specificities in terms of their Km and Vmax values. Accumulation of flavonoid constituents naringenin and quercetin were also quantified and their relative concentrations corroborated well with the expression levels of GaCHSs. Further, our results demonstrate that GaCHS isoforms show differential expression patterns at different reproductive phenological stages. Transcript levels of GaCHS2 were more than its isoform GaCHS1 at the anthesis stage of flower development pointing towards its probable role in male reproductive maturity.
Collapse
Affiliation(s)
- Tareq A Wani
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Shahzad A Pandith
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Ajai P Gupta
- Quality Control and Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Suresh Chandra
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Namrata Sharma
- Department of Botany, University of Jammu, Jammu Tawi, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| |
Collapse
|
23
|
Xu L, Yang P, Feng Y, Xu H, Cao Y, Tang Y, Yuan S, Liu X, Ming J. Spatiotemporal Transcriptome Analysis Provides Insights into Bicolor Tepal Development in Lilium "Tiny Padhye". FRONTIERS IN PLANT SCIENCE 2017; 8:398. [PMID: 28392796 PMCID: PMC5364178 DOI: 10.3389/fpls.2017.00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/08/2017] [Indexed: 05/24/2023]
Abstract
The bicolor Asiatic hybrid lily cultivar "Tiny Padhye" is an attractive variety because of its unique color pattern. During its bicolor tepal development, the upper tepals undergo a rapid color change from green to white, while the tepal bases change from green to purple. However, the molecular mechanisms underlying these changes remain largely uncharacterized. To systematically investigate the dynamics of the lily bicolor tepal transcriptome during development, we generated 15 RNA-seq libraries from the upper tepals (S2-U) and basal tepals (S1-D, S2-D, S3-D, and S4-D) of Lilium "Tiny Padhye." Utilizing the Illumina platform, a total of 295,787 unigenes were obtained from 713.12 million high-quality paired-end reads. A total of 16,182 unigenes were identified as differentially expressed genes during tepal development. Using Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (61 unigenes), and chlorophyll metabolic pathway (106 unigenes) were identified. Further analyses showed that most anthocyanin biosynthesis genes were transcribed coordinately in the tepal bases, but not in the upper tepals, suggesting that the bicolor trait of "Tiny Padhye" tepals is caused by the transcriptional regulation of anthocyanin biosynthetic genes. Meanwhile, the high expression level of chlorophyll degradation genes and low expression level of chlorophyll biosynthetic genes resulted in the absence of chlorophylls from "Tiny Padhye" tepals after flowering. Transcription factors putatively involved in the anthocyanin biosynthetic pathway and chlorophyll metabolism in lilies were identified using a weighted gene co-expression network analysis and their possible roles in lily bicolor tepal development were discussed. In conclusion, these extensive transcriptome data provide a platform for elucidating the molecular mechanisms of bicolor tepals in lilies and provide a basis for similar research in other closely related species.
Collapse
Affiliation(s)
- Leifeng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Panpan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- Department of Ornamental Plants, College of Landscape Architecture, Nanjing Forestry UniversityNanjing, China
| | - Yayan Feng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hua Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuwei Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuchao Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Suxia Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xinyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Ming
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
24
|
Suzuki K, Suzuki T, Nakatsuka T, Dohra H, Yamagishi M, Matsuyama K, Matsuura H. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC Genomics 2016; 17:611. [PMID: 27516339 PMCID: PMC4982199 DOI: 10.1186/s12864-016-2995-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Color patterns in angiosperm flowers are produced by spatially and temporally restricted deposition of pigments. Identifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest. Some dicots species develop bicolor petals, which are often caused by the post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. An Asiatic hybrid lily (Lilium spp.) cultivar Lollypop develops bicolor tepals with pigmented tips and white bases. Here, we analyzed the global transcription of pigmented and non-pigmented tepal parts from Lollypop, to determine the main transcriptomic differences. RESULTS De novo assembly of RNA-seq data yielded 49,239 contigs (39,426 unigenes), which included a variety of novel transcripts, such as those involved in flavonoid-glycosylation and sequestration and in regulation of anthocyanin biosynthesis. Additionally, 1258 of the unigenes exhibited significantly differential expression between the tepal parts (false discovery rates <0.05). The pigmented tepal parts accumulated more anthocyanins, and unigenes annotated as anthocyanin biosynthesis genes (e.g., CHS, dihydroflavonol 4-reductase, and anthocyanidin synthase) were expressed 7-30-fold higher than those in non-pigmented parts. These results indicate that the transcriptional regulation of biosynthesis genes is more likely involved in the development of bicolor lily tepals rather than the PTGS of CHS genes. In addition, the expression level of a unigene homologous to LhMYB12, which often regulates full-tepal anthocyanin pigmentation in lilies, was >2-fold higher in the pigmented parts. Thus, LhMYB12 should be involved in the transcriptional regulation of the biosynthesis genes in bicolor tepals. Other factors that potentially suppress or enhance the expression of anthocyanin biosynthesis genes, including a WD40 gene, were identified, and their involvement in bicolor development is discussed. CONCLUSIONS Our results indicate that the bicolor trait of Lollypop tepals is caused by the transcriptional regulation of anthocyanin biosynthesis genes and that the transcription profile of LhMYB12 provides a clue for elucidating the mechanisms of the trait. The tepal transcriptome constructed in this study will accelerate investigations of the genetic controls of anthocyanin color patterns, including the bicolor patterns, of Lilium spp.
Collapse
Affiliation(s)
- Kazuma Suzuki
- Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Tomohiro Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Present address: Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505 Japan
| | - Takashi Nakatsuka
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Kohei Matsuyama
- Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| |
Collapse
|
25
|
Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species. Proc Natl Acad Sci U S A 2016; 113:2448-53. [PMID: 26884205 DOI: 10.1073/pnas.1515294113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species.
Collapse
|
26
|
Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. PLANT PHYSIOLOGY 2015; 168:175-91. [PMID: 25739699 PMCID: PMC4424010 DOI: 10.1104/pp.114.254599] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/27/2015] [Indexed: 05/19/2023]
Abstract
Orchidaceae are well known for their fascinating floral morphologic features, specialized pollination, and distinctive ecological strategies. With their long-lasting flowers of various colors and pigmentation patterning, Phalaenopsis spp. have become important ornamental plants worldwide. In this study, we identified three R2R3-MYB transcription factors PeMYB2, PeMYB11, and PeMYB12. Their expression profiles were concomitant with red color formation in Phalaenopsis spp. flowers. Transient assay of overexpression of three PeMYBs verified that PeMYB2 resulted in anthocyanin accumulation, and these PeMYBs could activate the expression of three downstream structural genes Phalaenopsis spp. Flavanone 3-hydroxylase5, Phalaenopsis spp. Dihydroflavonol 4-reductase1, and Phalaenopsis spp. Anthocyanidin synthase3. In addition, these three PeMYBs participated in the distinct pigmentation patterning in a single flower, which was revealed by virus-induced gene silencing. In the sepals/petals, silencing of PeMYB2, PeMYB11, and PeMYB12 resulted in the loss of the full-red pigmentation, red spots, and venation patterns, respectively. Moreover, different pigmentation patterning was regulated by PeMYBs in the sepals/petals and lip. PeMYB11 was responsive to the red spots in the callus of the lip, and PeMYB12 participated in the full pigmentation in the central lobe of the lip. The differential pigmentation patterning was validated by RNA in situ hybridization. Additional assessment was performed in six Phalaenopsis spp. cultivars with different color patterns. The combined expression of these three PeMYBs in different ratios leads to a wealth of complicated floral pigmentation patterning in Phalaenopsis spp.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| | - You-Yi Chen
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chieh Tsai
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Huei Chen
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
27
|
Lou Q, Liu Y, Qi Y, Jiao S, Tian F, Jiang L, Wang Y. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3157-64. [PMID: 24790110 PMCID: PMC4071837 DOI: 10.1093/jxb/eru168] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Grape hyacinth (Muscari) is an important ornamental bulbous plant with an extraordinary blue colour. Muscari armeniacum, whose flowers can be naturally white, provides an opportunity to unravel the complex metabolic networks underlying certain biochemical traits, especially colour. A blue flower cDNA library of M. armeniacum and a white flower library of M. armeniacum f. album were used for transcriptome sequencing. A total of 89 926 uni-transcripts were isolated, 143 of which could be identified as putative homologues of colour-related genes in other species. Based on a comprehensive analysis relating colour compounds to gene expression profiles, the mechanism of colour biosynthesis was studied in M. armeniacum. Furthermore, a new hypothesis explaining the lack of colour phenotype of the grape hyacinth flower is proposed. Alteration of the substrate competition between flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) may lead to elimination of blue pigmentation while the multishunt from the limited flux in the cyanidin (Cy) synthesis pathway seems to be the most likely reason for the colour change in the white flowers of M. armeniacum. Moreover, mass sequence data obtained by the deep sequencing of M. armeniacum and its white variant provided a platform for future function and molecular biological research on M. armeniacum.
Collapse
Affiliation(s)
- Qian Lou
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi 712100, PR China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yali Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi 712100, PR China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, PR China
| | - Yinyan Qi
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi 712100, PR China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shuzhen Jiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi 712100, PR China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, PR China
| | - Feifei Tian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi 712100, PR China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, PR China
| | - Ling Jiang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi 712100, PR China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, PR China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi 712100, PR China State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
28
|
Morita Y, Takagi K, Fukuchi-Mizutani M, Ishiguro K, Tanaka Y, Nitasaka E, Nakayama M, Saito N, Kagami T, Hoshino A, Iida S. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:294-304. [PMID: 24517863 DOI: 10.1111/tpj.12469] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/31/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species.
Collapse
Affiliation(s)
- Yasumasa Morita
- National Institute for Basic Biology, Okazaki, 444-8585, Japan; Institute of Floricultural Science, National Agricultural Research Organization, Tsukuba, 305-8519, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamagishi M, Toda S, Tasaki K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.). THE NEW PHYTOLOGIST 2014; 201:1009-1020. [PMID: 24180488 DOI: 10.1111/nph.12572] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/27/2013] [Indexed: 05/21/2023]
Abstract
Many angiosperm families develop spatially regulated anthocyanin spots on their flowers. The Asiatic hybrid lily (Lilium spp.) cv 'Latvia' develops splatter-type spots on its tepals. The splatters arise simply from the deposition of anthocyanin pigments in the tepal epidermis. To determine how splatter development was regulated, we analysed the transcription of anthocyanin biosynthesis genes, and isolated and characterized an R2R3-MYB gene specific to splatter pigmentation. All anthocyanin biosynthesis genes were expressed in splatter-containing regions of tepals, but not in other regions, indicating that splatter pigmentation is caused by the transcriptional regulation of biosynthesis genes. Previously characterized LhMYB12 regulators were not involved in splatter pigmentation, but, instead, a new allele of the LhMYB12 gene, LhMYB12-Lat, isolated in this study, contributed to splatter development. In 'Latvia' and other lily plants expressing splatters, LhMYB12-Lat was preferentially transcribed in the splatter-containing region of tepals. Progeny segregation analysis showed that LhMYB12-Lat genotype and splatter phenotype were co-segregated among the F1 population, indicating that LhMYB12-Lat determines the presence or absence of splatters. LhMYB12-Lat contributes to splatter development, but not to full-tepal pigmentation and raised spot pigmentation. As a result of its unique sequences and different transcription profiles, this new allele of LhMYB12 should be a novel R2R3-MYB specifically associating with splatter spot development.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| | - Shinya Toda
- School of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| | - Keisuke Tasaki
- Research Faculty of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| |
Collapse
|
30
|
Lai Y, Li H, Yamagishi M. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11515-013-1281-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Davies KM, Albert NW, Schwinn KE. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:619-638. [PMID: 32480814 DOI: 10.1071/fp12195] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 05/22/2023]
Abstract
Flower colour is a key component for plant signaling to pollinators and a staggering variety of colour variations are found in nature. Patterning of flower colour, such as pigment spots or stripes, is common and is important in promoting pollination success. Developmentally programmed pigmentation patterns are of interest with respect to the evolution of specialised plant-pollinator associations and as models for dissecting regulatory signaling in plants. This article reviews the occurrence and function of flower colour patterns, as well as the molecular genetics of anthocyanin pigmentation regulation. The transcription factors controlling anthocyanin biosynthesis have been characterised for many species and an 'MBW' regulatory complex of R2R3MYB, bHLH and WD-Repeat proteins is of central importance. In particular, R2R3MYBs are key determinants of pigmentation intensity and patterning in plants. Progress is now being made on how environmental or developmental signal pathways may in turn control the production of the MBW components. Furthermore, additional regulatory proteins that interact with the MBW activation complex are being identified, including a range of proteins that repress complex formation or action, either directly or indirectly. This review discusses some of the recent data on the regulatory factors and presents models of how patterns may be determined.
Collapse
Affiliation(s)
- Kevin M Davies
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, New Zealand
| |
Collapse
|
32
|
Lai YS, Shimoyamada Y, Nakayama M, Yamagishi M. Pigment accumulation and transcription of LhMYB12 and anthocyanin biosynthesis genes during flower development in the Asiatic hybrid lily (Lilium spp.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:136-147. [PMID: 22794927 DOI: 10.1016/j.plantsci.2012.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 05/22/2023]
Abstract
Anthocyanin biosynthesis is often regulated by MYB transcription factors that are classified into AN2 and C1 subgroups. The AN2 subgroup regulates the late genes in the anthocyanin biosynthesis pathway of eudicots, whereas the C1 subgroup controls both early and late genes in monocots. Anthocyanin is a major pigment in Asiatic hybrid lilies (Lilium spp.), with LhMYB12 being the first AN2 subgroup in monocots. In this study, the accumulation of pigments and gene transcripts during flower bud development was evaluated to determine the genes regulated by LhMYB12. LhMYB12 and anthocyanin biosynthesis genes showed the same transcription profiles, with LhMYB12 directly activating the promoters of chalcone synthase and dihydroflavonol 4-reductase. This indicates that LhMYB12 regulates both early and late genes, despite belonging to the AN2 subgroup. The cultivar Landini accumulated anthocyanin and flavonol. The contents of these pigments increased during the late stages of flower bud development; this might result from the coordinated expression of early and late genes. During the early stages of flower bud development, the tepals contained no flavonoids but accumulated cinnamic acid derivatives. These results indicate that the profiles of pigment accumulation and gene transcription in lily tepals are unique among angiosperm flowers.
Collapse
Affiliation(s)
- Yun-Song Lai
- Graduate School of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan
| | - Yoshihiro Shimoyamada
- Graduate School of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan
| | - Masayoshi Nakayama
- National Institute of Floricultural Science, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan
| | - Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan.
| |
Collapse
|
33
|
Matsubara K, Kei S, Koizumi M, Kodama H, Ando T. RNA silencing in white petunia flowers creates pigmentation patterns invisible to the human eye. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:920-923. [PMID: 22498238 DOI: 10.1016/j.jplph.2012.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
Modern commercial petunias exhibit a wide range of flower colors, which can be observed in gardens. In this study, we present a petunia cultivar that exhibits a floral pattern that is invisible to humans but is possibly visible to pollinating insects. We show that this hidden pattern is established by differentially localized accumulation of flavonols and cinnamic acid derivatives in the corolla limb. This accumulation is caused by a combination of two distinct mechanisms that inhibit anthocyanin biosynthesis: a loss-of-function mutation in the ANTHOCYANIN2, and localized RNA-silencing of CHALCONE SYNTHASE-A.
Collapse
Affiliation(s)
- Kiyoshi Matsubara
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | | | | | | | | |
Collapse
|
34
|
Morita Y, Saito R, Ban Y, Tanikawa N, Kuchitsu K, Ando T, Yoshikawa M, Habu Y, Ozeki Y, Nakayama M. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:739-49. [PMID: 22288551 DOI: 10.1111/j.1365-313x.2012.04908.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The natural bicolor floral traits of the horticultural petunia (Petunia hybrida) cultivars Picotee and Star are caused by the spatial repression of the chalcone synthase A (CHS-A) gene, which encodes an anthocyanin biosynthetic enzyme. Here we show that Picotee and Star petunias carry the same short interfering RNA (siRNA)-producing locus, consisting of two intact CHS-A copies, PhCHS-A1 and PhCHS-A2, in a tandem head-to-tail orientation. The precursor CHS mRNAs are transcribed from the two CHS-A copies throughout the bicolored petals, but the mature CHS mRNAs are not found in the white tissues. An analysis of small RNAs revealed the accumulation of siRNAs of 21 nucleotides that originated from the exon 2 region of both CHS-A copies. This accumulation is closely correlated with the disappearance of the CHS mRNAs, indicating that the bicolor floral phenotype is caused by the spatially regulated post-transcriptional silencing of both CHS-A genes. Linkage between the tandemly arranged CHS-A allele and the bicolor floral trait indicates that the CHS-A allele is a necessary factor to confer the trait. We suppose that the spatially regulated production of siRNAs in Picotee and Star flowers is triggered by another putative regulatory locus, and that the silencing mechanism in this case may be different from other known mechanisms of post-transcriptional gene silencing in plants. A sequence analysis of wild Petunia species indicated that these tandem CHS-A genes originated from Petunia integrifolia and/or Petunia inflata, the parental species of P. hybrida, as a result of a chromosomal rearrangement rather than a gene duplication event.
Collapse
Affiliation(s)
- Yasumasa Morita
- Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba 305-8519, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Matoušek J, Kocábek T, Patzak J, Füssy Z, Procházková J, Heyerick A. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.). BMC PLANT BIOLOGY 2012; 12:27. [PMID: 22340661 PMCID: PMC3340318 DOI: 10.1186/1471-2229-12-27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 02/20/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lupulin glands of hop produce a specific metabolome including hop bitter acids valuable for the brewing process and prenylflavonoids with promising health-beneficial activities. The detailed analysis of the transcription factor (TF)-mediated regulation of the oligofamily of one of the key enzymes, i.e., chalcone synthase CHS_H1 that efficiently catalyzes the production of naringenin chalcone, a direct precursor of prenylflavonoids in hop, constitutes an important part of the dissection of the biosynthetic pathways leading to the accumulation of these compounds. RESULTS Homologues of flavonoid-regulating TFs HlMyb2 (M2), HlbHLH2 (B2) and HlWDR1 (W1) from hop were cloned using a lupulin gland-specific cDNA library from the hop variety Osvald's 72. Using a "combinatorial" transient GUS expression system it was shown that these unique lupulin-gland-associated TFs significantly activated the promoter (P) of chs_H1 in ternary combinations of B2, W1 and either M2 or the previously characterized HlMyb3 (M3). The promoter activation was strongly dependent on the Myb-P binding box TCCTACC having a core sequence CCWACC positioned on its 5' end region and it seems that the complexity of the promoter plays an important role. M2B2W1-mediated activation significantly exceeded the strength of expression of native chs_H1 gene driven by the 35S promoter of CaMV, while M3B2W1 resulted in 30% of the 35S:chs_H1 expression level, as quantified by real-time PCR. Another newly cloned hop TF, HlMyb7, containing a transcriptional repressor-like motif pdLNLD/ELxiG/S (PDLNLELRIS), was identified as an efficient inhibitor of chs_H1-activating TFs. Comparative analyses of hop and A. thaliana TFs revealed a complex activation of Pchs_H1 and Pchs4 in combinatorial or independent manners. CONCLUSIONS This study on the sequences and functions of various lupulin gland-specific transcription factors provides insight into the complex character of the regulation of the chs_H1 gene that depends on variable activation by combinations of R2R3Myb, bHLH and WDR TF homologues and inhibition by a Myb repressor.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Tomáš Kocábek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd, Kadaňská 2525, 438 46 Žatec, Czech Republic
| | - Zoltán Füssy
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jitka Procházková
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Arne Heyerick
- Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| |
Collapse
|
36
|
Liu Y, Lou Q, Xu W, Xin Y, Bassett C, Wang Y. Characterization of a chalcone synthase (CHS) flower-specific promoter from Lilium orential 'Sorbonne'. PLANT CELL REPORTS 2011; 30:2187-94. [PMID: 21800100 DOI: 10.1007/s00299-011-1124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/22/2011] [Accepted: 07/06/2011] [Indexed: 05/11/2023]
Abstract
The first enzyme in the flavonoid pathway, chalcone synthase, is encoded by a gene (CHS) whose expression is normally under developmental control. In our previous studies, an 896-bp promoter region of a flower-specific CHS gene was isolated from Lilium orential 'Sorbonne', and designated as PLoCHS. Here, the PLoCHS promoter was fused to the β-glucuronidase (GUS) gene to characterize its spatial and temporal expression in Petunia hybrida 'Dreams Midnight' using an Agrobacterium-mediated leaf disc transformation method. Our results demonstrated that GUS expression was present in flowers, but reduced or absent in the other tissues (leaf and stem) examined. In petals, GUS activity reached its peak at flower developmental stage 4, and decreased at later stages. Deletion analysis indicated that even a 307-bp fragment of the PLoCHS promoter could still direct flower-specific expression. Further deletion of the region from -261 to -72 bp resulted in weak expression in different organs, including flowers, leaves and stems. This evidence combined with prediction of cis-acting elements in the PLoCHS promoter suggests that the TACPyAT box located in this promoter plays a key role in the regulation of organ-specific expression.
Collapse
Affiliation(s)
- Yali Liu
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
37
|
Dick CA, Buenrostro J, Butler T, Carlson ML, Kliebenstein DJ, Whittall JB. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway. PLoS One 2011; 6:e18230. [PMID: 21490971 PMCID: PMC3072389 DOI: 10.1371/journal.pone.0018230] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/23/2011] [Indexed: 12/28/2022] Open
Abstract
Intra- and interspecific variation in flower color is a hallmark of angiosperm diversity. The evolutionary forces underlying the variety of flower colors can be nearly as diverse as the colors themselves. In addition to pollinator preferences, non-pollinator agents of selection can have a major influence on the evolution of flower color polymorphisms, especially when the pigments in question are also expressed in vegetative tissues. In such cases, identifying the target(s) of selection starts with determining the biochemical and molecular basis for the flower color variation and examining any pleiotropic effects manifested in vegetative tissues. Herein, we describe a widespread purple-white flower color polymorphism in the mustard Parrya nudicaulis spanning Alaska. The frequency of white-flowered individuals increases with increasing growing-season temperature, consistent with the role of anthocyanin pigments in stress tolerance. White petals fail to produce the stress responsive flavonoid intermediates in the anthocyanin biosynthetic pathway (ABP), suggesting an early pathway blockage. Petal cDNA sequences did not reveal blockages in any of the eight enzyme-coding genes in white-flowered individuals, nor any color differentiating SNPs. A qRT-PCR analysis of white petals identified a 24-fold reduction in chalcone synthase (CHS) at the threshold of the ABP, but no change in CHS expression in leaves and sepals. This arctic species has avoided the deleterious effects associated with the loss of flavonoid intermediates in vegetative tissues by decoupling CHS expression in petals and leaves, yet the correlation of flower color and climate suggests that the loss of flavonoids in the petals alone may affect the tolerance of white-flowered individuals to colder environments.
Collapse
Affiliation(s)
- Cynthia A. Dick
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Jason Buenrostro
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Timothy Butler
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Matthew L. Carlson
- Biological Sciences Department, University of Alaska, Anchorage, Alaska, United States of America
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, Martin CR, Davies KM. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. THE NEW PHYTOLOGIST 2011; 189:602-15. [PMID: 21039563 DOI: 10.1111/j.1469-8137.2010.03498.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pigment stripes associated with veins (venation) is a common flower colour pattern. The molecular genetics and function of venation were investigated in the genus Antirrhinum, in which venation is determined by Venosa (encoding an R2R3MYB transcription factor). Pollinator preferences were measured by field tests with Antirrhinum majus. Venosa function was examined using in situ hybridization and transient overexpression. The origin of the venation trait was examined by molecular phylogenetics. Venation and full-red flower colouration provide a comparable level of advantage for pollinator attraction relative to palely pigmented or white lines. Ectopic expression of Venosa confers pigmentation outside the veins. Venosa transcript is produced only in small areas of the corolla between the veins and the adaxial epidermis. Phylogenetic analyses suggest that venation patterning is an ancestral trait in Antirrhinum. Different accessions of three species with full-red pigmentation with or without venation patterning have been found. Epidermal-specific venation is defined through overlapping expression domains of the MYB (myoblastoma) and bHLH (basic Helix-Loop-Helix) co-regulators of anthocyanin biosynthesis, with the bHLH providing epidermal specificity and Venosa vein specificity. Venation may be the ancestral trait, with full-red pigmentation a derived, polyphyletic trait. Venation patterning is probably not fixed once species evolve full-red floral pigmentation.
Collapse
Affiliation(s)
- Yongjin Shang
- New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Müller GL, Drincovich MF, Andreo CS, Lara MV. Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3675-88. [PMID: 20591899 DOI: 10.1093/jxb/erq187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although the physiological and economical relevance of flowers is recognized, their primary metabolism during development has not been characterized, especially combining protein, transcript, and activity levels of the different enzymes involved. In this work, the functional characterization of the photosynthetic apparatus, pigment profiles, and the main primary metabolic pathways were analysed in tobacco sepals and petals at different developmental stages. The results indicate that the corolla photosynthetic apparatus is functional and capable of fixing CO(2); with its photosynthetic activity mainly involved in pigment biosynthesis. The particular pattern of expression, across the tobacco flower lifespan, of several proteins involved in respiration and primary metabolism, indicate that petal carbon metabolism is highest at the anthesis stage; while some enzymes are activated at the later stages, along with senescence. The first signs of corolla senescence in attached flowers are observed after anthesis; however, molecular data suggest that senescence is already onset at this stage. Feeding experiments to detached flowers at anthesis indicate that sugars, but not photosynthetic activity of the corolla, are capable of delaying the senescence process. On the other hand, photosynthetic activity and CO(2) fixation is active in sepals, where high expression levels of particular enzymes were detected. Sepals remained green and did not show signs of senescence in all the flower developmental stages analysed. Overall, the data presented contribute to an understanding of the metabolic processes operating during tobacco flower development, and identify key enzymes involved in the different stages.
Collapse
Affiliation(s)
- Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | | | | | | |
Collapse
|
40
|
Tateishi N, Ozaki Y, Okubo H. White Marginal Picotee Formation in the Petals of Camellia japonica ‘Tamanoura’. ACTA ACUST UNITED AC 2010. [DOI: 10.2503/jjshs1.79.207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Saito R, Kuchitsu K, Ozeki Y, Nakayama M. Spatiotemporal metabolic regulation of anthocyanin and related compounds during the development of marginal picotee petals in Petunia hybrida (Solanaceae). JOURNAL OF PLANT RESEARCH 2007; 120:563-8. [PMID: 17476460 DOI: 10.1007/s10265-007-0086-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 02/23/2007] [Indexed: 05/15/2023]
Abstract
Structures and levels of anthocyanin-related compounds were analyzed during the development of marginal picotee petals in white-center and white-marginal cultivars of Petunia hybrida. In the white site of a white-center cultivar, higher concentrations of quercetin derivatives possessing 7-O-glucoside and/or 3'-O-glucoside occurred than in the colored site, suggesting that these two quercetin glycosylation steps are site-specifically regulated. The boundary areas of petal coloration were composed of cells showing various color densities, whose uniformity among adjacent cells varied between these cultivars. These results indicate diversity in spatiotemporal regulation of anthocyanin biosynthesis and flavonol glycosylations between Petunia cultivars during marginal picotee formation.
Collapse
Affiliation(s)
- Ryoko Saito
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | | | | | | |
Collapse
|