1
|
Seregin IV, Ivanova TV, Voronkov AS, Kozhevnikova AD, Schat H. Zinc- and nickel-induced changes in fatty acid profiles in the zinc hyperaccumulator Arabidopsis halleri and non-accumulator Arabidopsis lyrata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107640. [PMID: 36958152 DOI: 10.1016/j.plaphy.2023.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
This pilot study aimed at comparing zinc (Zn) and nickel (Ni) effects on the fatty acid (FA) profiles, oxidative stress and desaturase activity in the Zn hyperaccumulator Arabidopsis halleri and the excluder Arabidopsis lyrata to allow a better picture of the physiological mechanisms which may contribute to metal tolerance or acclimation. The most significant changes in the FA composition were observed in the shoots of the hyperaccumulator and in the roots of the excluder, and were not only metal-dependent, but also species-specific, since the most significant changes in the shoots of A. halleri were observed under Ni treatment, though Ni, in contrast to Zn, was accumulated mainly in its roots. Several FAs appeared in the roots and shoots of A. lyrata only upon metal exposure, whereas they were already found in control A. halleri. In both species, there was an increase in oleic acid under Ni treatment in both organs, whereas in Zn-treated plants the increase was shown only for the shoots. A rare conjugated α-parinaric acid was identified only in the shoots of metal-treated A. halleri. In the shoots of the hyperaccumulator, there was an increase in the content of saturated FAs and a decrease in the content of unsaturated FAs, while in the roots of the excluder, the opposite pattern was observed. These metal-induced changes in FA composition in the shoots of A. halleri can lead to a decrease in the fluidity of membranes, which could diminish the penetration of ROS into the membrane and thus maintain its stability.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia.
| | - Tatiana V Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - Alexander S Voronkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - Henk Schat
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands; Department of Ecological Science, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Zhang C, Feng Y, Balutowski A, Miner GE, Rivera-Kohr DA, Hrabak MR, Sullivan KD, Guo A, Calderin JD, Fratti RA. The interdependent transport of yeast vacuole Ca 2+ and H + and the role of phosphatidylinositol 3,5-bisphosphate. J Biol Chem 2022; 298:102672. [PMID: 36334632 PMCID: PMC9706634 DOI: 10.1016/j.jbc.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Yeast vacuoles are acidified by the v-type H+-ATPase (V-ATPase) that is comprised of the membrane embedded VO complex and the soluble cytoplasmic V1 complex. The assembly of the V1-VO holoenzyme on the vacuole is stabilized in part through interactions between the VO a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). PI(3,5)P2 also affects vacuolar Ca2+ release through the channel Yvc1 and uptake through the Ca2+ pump Pmc1. Here, we asked if H+ and Ca2+ transport activities were connected through PI(3,5)P2. We found that overproduction of PI(3,5)P2 by the hyperactive fab1T2250A mutant augmented vacuole acidification, whereas the kinase-inactive fab1EEE mutant attenuated the formation of a H+ gradient. Separately, we tested the effects of excess Ca2+ on vacuole acidification. Adding micromolar Ca2+ blocked vacuole acidification, whereas chelating Ca2+ accelerated acidification. The effect of adding Ca2+ on acidification was eliminated when the Ca2+/H+ antiporter Vcx1 was absent, indicating that the vacuolar H+ gradient can collapse during Ca2+ stress through Vcx1 activity. This, however, was independent of PI(3,5)P2, suggesting that PI(3,5)P2 plays a role in submicromolar Ca2+ flux but not under Ca2+ shock. To see if the link between Ca2+ and H+ transport was bidirectional, we examined Ca2+ transport when vacuole acidification was inhibited. We found that Ca2+ transport was inhibited by halting V-ATPase activity with Bafilomycin or neutralizing vacuolar pH with chloroquine. Together, these data show that Ca2+ transport and V-ATPase efficacy are connected but not necessarily through PI(3,5)P2.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Gregory E Miner
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
3
|
Altaf MA, Hao Y, He C, Mumtaz MA, Shu H, Fu H, Wang Z. Physiological and Biochemical Responses of Pepper ( Capsicum annuum L.) Seedlings to Nickel Toxicity. FRONTIERS IN PLANT SCIENCE 2022; 13:950392. [PMID: 35923881 PMCID: PMC9340659 DOI: 10.3389/fpls.2022.950392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 05/23/2023]
Abstract
Globally, heavy metal pollution of soil has remained a problem for food security and human health, having a significant impact on crop productivity. In agricultural environments, nickel (Ni) is becoming a hazardous element. The present study was performed to characterize the toxicity symptoms of Ni in pepper seedlings exposed to different concentrations of Ni. Four-week-old pepper seedlings were grown under hydroponic conditions using seven Ni concentrations (0, 10, 20, 30, 50, 75, and 100 mg L-1 NiCl2. 6H2O). The Ni toxicity showed symptoms, such as chlorosis of young leaves. Excess Ni reduced growth and biomass production, root morphology, gas exchange elements, pigment molecules, and photosystem function. The growth tolerance index (GTI) was reduced by 88-, 75-, 60-, 45-, 30-, and 19% in plants against 10, 20, 30, 50, 75, and 100 mg L-1 Ni, respectively. Higher Ni concentrations enhanced antioxidant enzyme activity, ROS accumulation, membrane integrity [malondialdehyde (MDA) and electrolyte leakage (EL)], and metabolites (proline, soluble sugars, total phenols, and flavonoids) in pepper leaves. Furthermore, increased Ni supply enhanced the Ni content in pepper's leaves and roots, but declined nitrogen (N), potassium (K), and phosphorus (P) levels dramatically. The translocation of Ni from root to shoot increased from 0.339 to 0.715 after being treated with 10-100 mg L-1 Ni. The uptake of Ni in roots was reported to be higher than that in shoots. Generally, all Ni levels had a detrimental impact on enzyme activity and led to cell death in pepper seedlings. However, the present investigation revealed that Ni ≥ 30 mg L-1 lead to a deleterious impact on pepper seedlings. In the future, research is needed to further explore the mechanism and gene expression involved in cell death caused by Ni toxicity in pepper plants.
Collapse
Affiliation(s)
- Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Chengyao He
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
4
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
5
|
Wang XH, Wang Q, Nie ZW, He LY, Sheng XF. Ralstonia eutropha Q2-8 reduces wheat plant above-ground tissue cadmium and arsenic uptake and increases the expression of the plant root cell wall organization and biosynthesis-related proteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1488-1499. [PMID: 30144722 DOI: 10.1016/j.envpol.2018.08.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, the molecular mechanisms involved in Ralstonia eutropha Q2-8-induced increased biomass and reduced cadmium (Cd) and arsenic (As) uptake in wheat plants (Triticum aestivum cv. Yangmai 16) were investigated in growth chambers. Strain Q2-8 significantly increased plant biomass (22-75%) without and with Cd (5 μM) + As (10 μM) stress and reduced plant above-ground tissue Cd (37%) and As (34%) contents compared to those in the controls. Strain Q2-8 significantly increased the proportions of Cd and As in wheat root cell walls. Under Cd and As stress, 109 root proteins were differentially expressed among which those involved in metabolisms, stress and defence, and energy were dominant in the presence of strain Q2-8. Furthermore, energy-, defence-, and cell wall biosynthesis-related proteins were found to be up-regulated. Notably, differentially expressed cell wall biosynthesis-related proteins in roots were only found in bacteria-inoculated plants under Cd and As stress. The results suggest that strain Q2-8 can alleviate Cd and As toxicity to wheat plant seedlings and reduce above-ground tissue Cd and As uptake by increasing the efficiency of root energy metabolism, defence, and cell wall biosynthesis under Cd and As stress.
Collapse
Affiliation(s)
- Xiao-Han Wang
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qi Wang
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zong-Wei Nie
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lin-Yan He
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xia-Fang Sheng
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A. Nickel; whether toxic or essential for plants and environment - A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:641-651. [PMID: 30340176 DOI: 10.1016/j.plaphy.2018.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/15/2018] [Accepted: 10/10/2018] [Indexed: 05/03/2023]
Abstract
Nickel (Ni) is becoming a toxic pollutant in agricultural environments. Due to its diverse uses from a range of common household items to industrial applications, it is essential to examine Ni bioavailability in soil and plants. Ni occurs in the environment (soil, water and air) in very small concentrations and eventually taken up by plants through roots once it becomes available in soil. It is an essential nutrient for normal plant growth and development and required for the activation of several enzymes such as urease, and glyoxalase-I. Ni plays important roles in a wide range of physiological processes including seed germination, vegetative and reproductive growth, photosynthesis as well as in nitrogen metabolism. Therefore, plants cannot endure their life cycle without adequate Ni supply. However, excessive Ni concentration can lead to induce ROS production affecting numerous physiological and biochemical processes such as photosynthesis, transpiration, as well as mineral nutrition and causes phytotoxicity in plants. ROS production intensifies the disintegration of plasma membranes and deactivates functioning of vital enzymes through lipid peroxidation. This review article explores the essential roles of Ni in the life cycle of plant as well as its toxic effects in details. In conclusion, we have proposed different viable approaches for remediation of Ni-contaminated soils.
Collapse
Affiliation(s)
- Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia.
| | - Mohsin Tanveer
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia.
| | - Abdul Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Hubei, China
| | - Shamsur Rehman
- National Maize Key Laboratory, Department of Crop Biotechnology, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
7
|
Sharma SS, Dietz KJ, Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. PLANT, CELL & ENVIRONMENT 2016; 39:1112-26. [PMID: 26729300 DOI: 10.1111/pce.12706] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 05/02/2023]
Abstract
Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501, Bielefeld, Germany
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
8
|
Kabała K, Janicka-Russak M, Reda M, Migocka M. Transcriptional regulation of the V-ATPase subunit c and V-PPase isoforms in Cucumis sativus under heavy metal stress. PHYSIOLOGIA PLANTARUM 2014; 150:32-45. [PMID: 23718549 DOI: 10.1111/ppl.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 05/11/2023]
Abstract
Two electrogenic proton pumps, vacuolar H(+) transporting ATPase (V-ATPase, EC 3.6.3.14) and vacuolar H(+) transporting inorganic pyrophosphatase (V-PPase, EC 3.6.1.1), co-exist in the vacuolar membrane of plant cells. In this work, all CsVHA and CsVHP genes encoding V-ATPase and V-PPase, respectively, were identified in the cucumber genome. Among them, three CsVHA-c genes for V-ATPase subunit c and two CsVHP1 genes for type I V-PPase were analyzed in detail. Individual isogenes were differentially regulated in plant tissues and during plant development as well as under changing environmental conditions. CsVHA-c1 and CsVHA-c2 showed similar tissue-specific expression patterns with the highest levels in stamens and old leaves. CsVHP1;1 was predominantly expressed in roots and female flowers. In contrast, both CsVHA-c3 and CsVHP1;2 remained in a rather constant ratio in all examined cucumber organs. Under heavy metal stress, the transcript amount of CsVHA-c1 and CsVHP1;1 showed a pronounced stress-dependent increase after copper and nickel treatment. CsVHA-c3 was upregulated by nickel only whereas CsVHA-c2 was induced by all metals with the most visible effect of copper. Additionally, CsVHP1;2 showed a tendency to be upregulated by copper and zinc. We propose that CsVHA-c1, CsVHA-c2 and CsVHP1;1 are essential elements of mechanisms involved in adaptation of cucumber plants to copper toxicity.
Collapse
Affiliation(s)
- Katarzyna Kabała
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, 50-328 , Wrocław, Poland
| | | | | | | |
Collapse
|
9
|
Dell’Orto M, Nisi PD, Vigani G, Zocchi G. Fe deficiency differentially affects the vacuolar proton pumps in cucumber and soybean roots. FRONTIERS IN PLANT SCIENCE 2013; 4:326. [PMID: 23986768 PMCID: PMC3753452 DOI: 10.3389/fpls.2013.00326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/01/2013] [Indexed: 05/09/2023]
Abstract
Iron uptake in dicots depends on their ability to induce a set of responses in root cells including rhizosphere acidification through H(+) extrusion and apoplastic Fe(III) reduction by Fe(III)-chelate reductase. These responses must be sustained by metabolic rearrangements aimed at providing the required NAD(P)H, ATP and H(+). Previous results in Fe-deficient cucumber roots showed that high H(+) extrusion is accompanied by increased phosphoenolpyruvate carboxylase (PEPC) activity, involved in the cytosol pH-stat; moreover (31)P-NMR analysis revealed increased vacuolar pH and decreased vacuolar [inorganic phosphate (Pi)]. The opposite was found in soybean: low rhizosphere acidification, decreased PEPC activity, vacuole acidification, and increased vacuolar [Pi]. These findings, highlighting a different impact of the Fe deficiency responses on cytosolic pH in the two species, lead to hypothesize different roles for H(+) and Pi movements across the tonoplast in pH homeostasis. The role of vacuole in cytosolic pH-stat involves the vacuolar H(+)-ATPase (V-ATPase) and vacuolar H(+)-pyrophosphatase (V-PPase) activities, which generating the ΔpH and ΔΨ, mediate the transport of solutes, among which Pi, across the tonoplast. Fluxes of Pi itself in its two ionic forms, H2PO4 (-) predominating in the vacuole and HPO4 (2-) in the cytosol, may be involved in pH homeostasis owing to its pH-dependent protonation/deprotonation reactions. Tonoplast enriched fractions were obtained from cucumber and soybean roots grown with or without Fe. Both V-ATPase and V-PPase activities were analyzed and the enrichment and localization of the corresponding proteins in root tissues were determined by Western blot and immunolocalization. V-ATPase did not change its activity and expression level in response to Fe starvation in both species. V-PPase showed a different behavior: in cucumber roots its activity and abundance were decreased, while in Fe-deficient soybean roots they were increased. The distinct role of the two H(+) pumps in Pi fluxes between cytoplasm and vacuole in Fe-deficient cucumber and soybean root cells is discussed.
Collapse
Affiliation(s)
- Marta Dell’Orto
- *Correspondence: Marta Dell’Orto, Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy e-mail:
| | | | | | | |
Collapse
|
10
|
Martins V, Hanana M, Blumwald E, Gerós H. Copper transport and compartmentation in grape cells. PLANT & CELL PHYSIOLOGY 2012; 53:1866-1880. [PMID: 22952251 DOI: 10.1093/pcp/pcs125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Copper-based fungicides have been widely used against several grapevine (Vitis vinifera L.) diseases since the late 1800s when the Bordeaux mixture was developed, but their intensive use has raised phytotoxicity concerns. In this study, physiological, biochemical and molecular approaches were combined to investigate the impacts of copper in grape cells and how it is transported and compartmented intracellularly. Copper reduced the growth and viability of grape cells (CSB, Cabernet Sauvignon Berry) in a dose-dependent manner above 100 µM and was accumulated in specific metal ion sinks. The copper-sensitive probe Phen Green SK was used to characterize copper transport across the plasma membrane of CSB cells. The transport system (K(m) = 583 µM; V(max) = 177 × 10(-6) %ΔF min(-1) protoplast(-1)) was regulated by copper availability in the culture medium, stimulated by Ca(2+) and inhibited by Zn(2+). The pH-sensitive fluorescent probe ACMA (9-amino-6-chloro-2-methoxyacridine) was used to evaluate the involvement of proton-dependent copper transport across the tonoplast. Cu(2+) compartmentation in the vacuole was dependent on the transmembrane pH gradient generated by both V-H(+)-ATPase and V-H(+)-pyrophosphatase (PPase). High copper levels in the growth medium did not affect the activity of V-H(+)-PPase but decreased the magnitude of the H(+) gradient generated by V-H(+)-ATPase. Expression studies of VvCTr genes showed that VvCTr1 and VvCTr8 were distinctly affected by CuSO(4) availability in grape cell cultures and that both genes were highly expressed in the green stage of grape berries.
Collapse
Affiliation(s)
- Viviana Martins
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Portugal
| | | | | | | |
Collapse
|