1
|
Saada S, Solomon CU, Drea S. Programmed Cell Death in Developing Brachypodium distachyon Grain. Int J Mol Sci 2021; 22:ijms22169086. [PMID: 34445790 PMCID: PMC8396479 DOI: 10.3390/ijms22169086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
The normal developmental sequence in a grass grain entails the death of several maternal and filial tissues in a genetically regulated process termed programmed cell death (PCD). The progression and molecular aspects of PCD in developing grains have been reported for domesticated species such as barley, rice, maize and wheat. Here, we report a detailed investigation of PCD in the developing grain of the wild model species Brachypodium distachyon. We detected PCD in developing Brachypodium grains using molecular and histological approaches. We also identified in Brachypodium the orthologs of protease genes known to contribute to grain PCD and surveyed their expression. We found that, similar to cereals, PCD in the Brachypodium nucellus occurs in a centrifugal pattern following anthesis. However, compared to cereals, the rate of post-mortem clearance in the Brachypodium nucellus is slower. However, compared to wheat and barley, mesocarp PCD in Brachypodium proceeds more rapidly in lateral cells. Remarkably, Brachypodium mesocarp PCD is not coordinated with endosperm development. Phylogenetic analysis suggests that barley and wheat possess more vacuolar processing enzymes that drive nucellar PCD compared to Brachypodium and rice. Our expression analysis highlighted putative grain-specific PCD proteases in Brachypodium. Combined with existing knowledge on grain PCD, our study suggests that the rate of nucellar PCD moderates grain size and that the pattern of mesocarp PCD influences grain shape.
Collapse
Affiliation(s)
- Safia Saada
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK; (S.S.); (S.D.)
| | - Charles Ugochukwu Solomon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK; (S.S.); (S.D.)
- Department of Plant Science and Biotechnology, Abia State University, Uturu PMB 2000, Nigeria
- Correspondence:
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK; (S.S.); (S.D.)
| |
Collapse
|
2
|
Farias ARBD, Almeida NP, Domont GB, Nogueira FCS, Campos FAP. Quantitative Proteome Analysis of Jatropha curcas L. Genotypes with Contrasting Levels of Phorbol Esters. Proteomics 2020; 20:e1900273. [PMID: 32419338 DOI: 10.1002/pmic.201900273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/30/2020] [Indexed: 11/10/2022]
Abstract
The phorbol esters in the seeds of Jatropha curcas are a major hindrance to the full exploitation of the potential of this oil crop as a source of raw material for the production of biodiesel. Here, various quantitative proteomic strategies are used to establish the proteomes of roots, leaves, and endosperm of two genotypes of J. curcas with contrasting levels of phorbol esters in the seeds. In total 4532, 1775, and 503 proteins are identified respectively in roots, leaves, and endosperm, comprising 5068 unique proteins; of this total, 185 are differentially abundant in roots, 72 in leaves, and 20 in the endosperm. The biosynthetic pathways for flavonoids and terpenoids are well represented in roots, including the complete set of proteins for the mevalonate and non-mevalonate/Deoxyxylulose 5-Phosphate pathways, and proteins involved in the branches which lead to the synthesis tricyclic diterpenoids and gibberellins. Also, casbene synthase which catalyzes the first committed step in the biosynthesis of tigliane-type diterpenes is identified in roots of both genotypes, but not in leaves and endosperm. This dataset will be a valuable resource to explore the biochemical basis of the low toxicity of Jatropha genotypes with low concentration of phorbol esters in the seeds.
Collapse
Affiliation(s)
| | - Natália P Almeida
- Department of Agricultural Sciences, Federal University of Ceará, Fortaleza, 60356-900, Brazil
| | - Gilberto B Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Fábio C S Nogueira
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Francisco A P Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60455-900, Brazil
| |
Collapse
|
3
|
Doronina TV, Sheval EV, Lazareva EM. Programmed Cell Death during Formation of the Embryo Sac and Seed. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Yamada K, Basak AK, Goto-Yamada S, Tarnawska-Glatt K, Hara-Nishimura I. Vacuolar processing enzymes in the plant life cycle. THE NEW PHYTOLOGIST 2020; 226:21-31. [PMID: 31679161 DOI: 10.1111/nph.16306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
Vacuolar processing enzyme (VPE) is a cysteine-type endopeptidase that has a substrate-specificity for asparagine or aspartic acid residues and cleaves peptide bonds at their carboxyl-terminal side. Various vacuolar proteins are synthesized as larger proprotein precursors, and VPE is an important initiator of maturation and activation of these proteins. It mediates programmed cell death (PCD) by provoking vacuolar rupture and initiating the proteolytic cascade leading to PCD. Vacuolar processing enzyme also possesses a peptide ligation activity, which is responsible for producing cyclic peptides in several plant species. These unique functions of VPE support developmental and environmental responses in plants. The number of VPE homologues is higher in angiosperm species, indicating that there has been differentiation and specialization of VPE function over the course of evolution. Angiosperm VPEs are separated into two major types: the γ-type VPEs, which are expressed mainly in vegetative organs, and the β-type VPEs, whose expression occurs mainly in storage organs; in eudicots, the δ-type VPEs are further separated within γ-type VPEs. This review also considers the importance of processing and peptide ligation by VPE in vacuolar protein maturation.
Collapse
Affiliation(s)
- Kenji Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Arpan Kumar Basak
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | | |
Collapse
|
5
|
Rocha AJ, de Oliveira Barsottini MR, da Rocha SL. Selection and validation of castor bean (Ricinus communis) reference genes for quantitative PCR (RT-qPCR) in developing and germinating seeds and expression pattern of four ricin-family genes. Gene Expr Patterns 2019; 34:119072. [PMID: 31536823 DOI: 10.1016/j.gep.2019.119072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/27/2019] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
This study aims to expand the set of internal control genes used for RT-qPCR experiments with Castor bean (Ricinus communis) seeds by evaluating candidate genes across several seed tissues and developmental stages. Nine reference genes were selected, including actin-11 (ACT11), tubulin alpha-2 (Tα2), elongation factor 1-alpha (EF1-α), protein phosphatase 2A-2 (PP2A2), polyubiquitin-3 (PUB3) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biological samples consisted of R. communis seeds in 15 stages of maturation and germination. We demonstrate that PP2A2, PUB3 and EF1-α are the most stably expressed genes across the tested conditions and therefore appropriate for RT-qPCR. Subsequently, those reference genes were used for the analysis of the expression of four R. communis ricin-family genes. In developing seeds, the highest ricin expression levels was seen in the nucellus and in the endosperm, whereas in germinating seeds a peak expression occurs 4-6 days after germination. The four tested ricin isoforms exhibited differential expression patterns across tissues and seed developmental stages, which may indicate distinct biological roles for each ricin gene.
Collapse
Affiliation(s)
- Antônio José Rocha
- Genomics and BioEnergy Laboratory-LGE, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.
| | | | - Soraya Lília da Rocha
- Laboratory of Environmental Biology and Microbiology -LABIAM, Federal Institute of Education, Science and Technology - IFCE - Campus Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
6
|
Lemos Rocha G, Pireda S, da Silva Araújo J, Amâncio Oliveira AE, Lima Tavares Machado O, da Cunha M, Grativol C, Valevski Sales Fernandes K. Programmed cell death in soybean seed coats. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110232. [PMID: 31521224 DOI: 10.1016/j.plantsci.2019.110232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Seed coat is the tissue which establishes an interface between the seed inner tissues and external environment. Our group has shown that cowpea seed coat undergoes coordinated events of programmed cell death (PCD) during development. In relation to germinating seed coats, little is known on PCD events. The goal here was to investigate the biochemical aspects of germinating soybean seed coat, focusing on proteolytic activities related to PCD. In gel and in solution activity profiles of quiescent and germinating seed coat extracts revealed a complex pattern of caspase- and metacaspase-like cysteine protease activities. Trypsin inhibitor and reserve proteins were revealed as potential substrates for these proteases. A pancaspase inhibitor (z-VAD-CHO) affected the radicle length of seeds germinated under its presence. Ultrastructural analysis showed the absence of cell organelles in all seed coat layers after imbibition, while oligonucleosome fragments peaked at 72 h after imbibition (HAI). Altogether, the data suggest the presence of biochemical PCD hallmarks in germinating soybean seed coat and point to the involvement of the detected protease activities in processes such as reserve protein mobilization and weakening of seed coat.
Collapse
Affiliation(s)
- Gustavo Lemos Rocha
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes/RJ, Brazil
| | - Saulo Pireda
- Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes/RJ, Brazil
| | - Jucélia da Silva Araújo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes/RJ, Brazil
| | - Antônia Elenir Amâncio Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes/RJ, Brazil
| | - Olga Lima Tavares Machado
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes/RJ, Brazil
| | - Maura da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes/RJ, Brazil
| | - Clicia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes/RJ, Brazil
| | - Kátia Valevski Sales Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes/RJ, Brazil.
| |
Collapse
|
7
|
Buono RA, Hudecek R, Nowack MK. Plant proteases during developmental programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2097-2112. [PMID: 30793182 PMCID: PMC7612330 DOI: 10.1093/jxb/erz072] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Proteases are among the key regulators of most forms of programmed cell death (PCD) in animals. Many PCD processes have also been associated with protease expression or activation in plants, However, functional evidence for the roles and actual modes of action of plant proteases in PCD remains surprisingly limited. In this review, we provide an update on protease involvement in the context of developmentally regulated plant PCD. To illustrate the diversity of protease functions, we focus on several prominent developmental PCD processes, including xylem and tapetum maturation, suspensor elimination, endosperm degradation, and seed coat formation, as well as plant senescence processes. Despite the substantial advances in the field, protease functions are often only correlatively linked to developmental PCD, and the specific molecular roles of proteases in many developmental PCD processes remain to be elucidated.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
8
|
Yu A, Wang Z, Zhang Y, Li F, Liu A. Global Gene Expression of Seed Coat Tissues Reveals a Potential Mechanism of Regulating Seed Size Formation in Castor Bean. Int J Mol Sci 2019; 20:E1282. [PMID: 30875738 PMCID: PMC6471003 DOI: 10.3390/ijms20061282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
The physiological and molecular basis of seed size formation is complex, and the development of seed coat (derived from integument cells) might be a critical factor that determines seed size formation for many endospermic seeds. Castor bean (Ricinus communis L.), a model system of studying seed biology, has large and persistent endosperm with a hard seed coat at maturity. Here, we investigated the potential molecular mechanisms underlying seed size formation in castor bean by comparing the difference between global gene expression within developing seed coat tissues between the large-seed ZB107 and small-seed ZB306. First, we observed the cell size of seed coat and concluded that the large seed coat area of ZB107 resulted from more cell numbers (rather than cell size). Furthermore, we found that the lignin proportion of seed coat was higher in ZB306. An investigation into global gene expression of developing seed coat tissues revealed that 815 genes were up-regulated and 813 were down-regulated in ZB306 relative to ZB107. Interestingly, we found that many genes involved in regulating cell division were up-regulated in ZB107, whereas many genes involved in regulating lignin biosynthesis (including several NAC members, as well as MYB46/83 and MYB58/63) and in mediating programmed cell death (such as CysEP1 and βVPE) were up-regulated in ZB306. Furthermore, the expression patterns of the genes mentioned above indicated that the lignification of seed coat tissues was enhanced and occurred earlier in the developing seeds of ZB306. Taken together, we tentatively proposed a potential scenario for explaining the molecular mechanisms of seed coat governing seed size formation in castor bean by increasing the cell number and delaying the onset of lignification in seed coat tissues in large-seed ZB107. This study not only presents new information for possible modulation of seed coat related genes to improve castor seed yield, but also provides new insights into understanding the molecular basis of seed size formation in endospermic seeds with hard seed coat.
Collapse
Affiliation(s)
- Anmin Yu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Zaiqing Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Zhang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Fei Li
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
9
|
Cloning and gene expression analysis of two cDNA of cysteine proteinase genes involved in programmed cell death in the inner integument from developing seeds of Jatropha curcas L. Gene Expr Patterns 2017; 27:122-127. [PMID: 29277544 DOI: 10.1016/j.gep.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022]
Abstract
In this paper, two cysteine proteinases were cloned from Jatropha curcas seeds. The full length cDNAs obtained from cloning of Jc-CysEP1 and Jc-CysEP2 genes were 1.516bp and 1500 pb, respectively. The Jc-CysEP1 contained a 1083bp open reading frame (ORF) coding for 360 amino acids. The JcCysEP1 protein sequence had an estimated native molecular weight of 36.89 kDa, with a predicted isoelectric point of 4.55. The average lengths of JcCysEP1 5' UTR and 3' UTR were 269 bp and 167bp, respectively. The Jc-CysEP2 contained a 1077 pb open reading frame (ORF) that encoded 358 amino acids. We also identified UTRs with lengths of 229 pb (5'UTR) and 194 pb (3'UTR). The Jc-CysEP2 sequence had a native molecular weight of 39.94 kDa, with a predicted isoelectric point of 6.19. Real-time PCR analyses of developing seeds (stages I-VII) showed that most cysteine proteinase genes were expressed at stage IV (middle stage) revealing peculiar spatio-temporal differences. JcCysEP2 was the cysteine proteinase gene with the highest expression in inner integument tissue, while JcCysEP1 was expressed in lower levels. Our results suggest that JcCysEP2 could be the major cysteine proteinase gene involved in PCD events in inner integument tissue, playing a critical role in PCD events during seed development, while Jc-CyEP1 and JcCysEP2 genes act cooperatively in stages IV-VII. JcCysEP2 is important to complete their participation in PCD until development of seeds.
Collapse
|
10
|
Soares EL, Lima MLB, Nascimento JRS, Soares AA, Coutinho ÍAC, Campos FAP. Seed development of Jatropha curcas L. (Euphorbiaceae): integrating anatomical, ultrastructural and molecular studies. PLANT CELL REPORTS 2017; 36:1707-1716. [PMID: 28721520 DOI: 10.1007/s00299-017-2184-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 05/28/2023]
Abstract
This work provides a detailed histological analysis of the development of Jatropha curcas seeds, together with an assessment of the role of programmed cell death in this process. Seeds of Jatropha curcas are a potential source of raw material for the production of biodiesel, but very little is known about how the architecture of the seeds is shaped by the coordinated development of the embryo, endosperm and maternal tissues, namely integuments and nucellus. This study used standard anatomical and ultrastructural techniques to evaluate seed development and programmed cell death (PCD) in the inner integument was monitored by qPCR. In these studies, we found that the embryo sac formation is of the Polygonum type. We also found that embryogenesis is a slow process and the embryo is nourished by the suspensor at earlier stages and by nutrients remobilized from the lysis of the inner integument at later stages. Two types of programmed cell death contribute to the differentiation of the inner integument that begins at early stages of seed development. In addition, the mature embryo presents features of adaptation to dry environments such as the presence of four seminal roots, water absorbing stomata in the root zone and already differentiated protoxylem elements. The findings in this study fill in gaps related to the ontogeny of J. curcas seed development and provide novel insights regarding the types of PCD occurring in the inner integument.
Collapse
Affiliation(s)
- Emanoella L Soares
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Magda L B Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - José R S Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Arlete A Soares
- Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ítalo A C Coutinho
- Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Francisco A P Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
11
|
Zamyatnin AA. Plant Proteases Involved in Regulated Cell Death. BIOCHEMISTRY (MOSCOW) 2016; 80:1701-15. [PMID: 26878575 DOI: 10.1134/s0006297915130064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death.
Collapse
Affiliation(s)
- A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
12
|
Shah M, Soares EL, Lima MLB, Pinheiro CB, Soares AA, Domont GB, Nogueira FCS, Campos FAP. Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas. J Proteomics 2016; 143:346-352. [PMID: 26924298 DOI: 10.1016/j.jprot.2016.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 01/17/2023]
Abstract
UNLABELLED The inner integument of Jatropha curcas seeds is a non-photosynthetic tissue that acts primarily as a conduit for the delivery of nutrients to the embryo and endosperm. In this study we performed a histological and transmission electron microscopy analysis of the inner integument in stages prior to fertilization to 25days after pollination, to establish the structural changes associated with the plastid to gerontoplast transition. This study showed that plastids are subjected to progressive changes, which include the dismantling of the internal membrane system, matrix degradation and the formation of stromule-derived vesicles. A proteome analysis of gerontoplasts isolated from the inner integument at 25days after pollination, resulted in the identification of 1923 proteins, which were involved in a myriad of metabolic functions, such as synthesis of amino acids and fatty acids. Among the identified proteins, were also a number of hydrolases (peptidases, lipases and carbohydrases), which presumably are involved in the ordered dismantling of this organelle to provide additional sources of nutrients for the growing embryo and endosperm. The dataset we provide here may provide a foundation for the study of the proteome changes associated with the plastid to gerontoplast transition in non-photosynthetic tissues. SIGNIFICANCE We describe ultrastructural features of gerontoplasts isolated from the inner integument of developing seeds of Jatropha curcas, together with a deep proteome analysis of these gerontoplasts. This article explores a new aspect of the biology of plastids, namely the ultrastructural and proteome changes associated with the transition plastid to gerontoplast in a non-photosynthetic tissue.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Emanoella L Soares
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Magda L B Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Camila B Pinheiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Arlete A Soares
- Department of Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Gilberto B Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Fabio C S Nogueira
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil.
| | - Francisco A P Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil.
| |
Collapse
|
13
|
Jucá TL, de Oliveira Monteiro-Moreira AC, Moreira RA, de Araújo CV, de Souza Lopes JL, Moreno FBMB, Ramos MV. A new peptide from Jatropha curcas seeds: Unusual sequence and insights into its synthetic analogue that enhances proteolytic activity of papain. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Shah M, Soares EL, Carvalho PC, Soares AA, Domont GB, Nogueira FCS, Campos FAP. Proteomic Analysis of the Endosperm Ontogeny of Jatropha curcas L. Seeds. J Proteome Res 2015; 14:2557-68. [PMID: 25920442 DOI: 10.1021/acs.jproteome.5b00106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seeds of Jatropha curcas L. represent a potential source of raw material for the production of biodiesel. However, this use is hampered by the lack of basic information on the biosynthetic pathways associated with synthesis of toxic diterpenes, fatty acids, and triacylglycerols, as well as the pattern of deposition of storage proteins during seed development. In this study, we performed an in-depth proteome analysis of the endosperm isolated from five developmental stages which resulted in the identification of 1517, 1256, 1033, 752, and 307 proteins, respectively, summing up 1760 different proteins. Proteins with similar label free quantitation expression pattern were grouped into five clusters. The biological significance of these identifications is discussed with special focus on the analysis of seed storage proteins, proteins involved in the metabolism of fatty acids, carbohydrates, toxic components and proteolytic processing. Although several enzymes belonging to the biosynthesis of diterpenoid precursors were identified, we were unable to find any terpene synthase/cyclase, indicating that the synthesis of phorbol esters, the main toxic diterpenes, does not occur in seeds. The strategy used enabled us to provide a first in depth proteome analysis of the developing endosperm of this biodiesel plant, providing an important glimpse into the enzymatic machinery devoted to the production of C and N sources to sustain seed development.
Collapse
Affiliation(s)
- Mohibullah Shah
- †Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Emanoella L Soares
- †Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Paulo C Carvalho
- ‡Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná 81350-010, Brazil
| | - Arlete A Soares
- ∥Department of Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| | - Gilberto B Domont
- §Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- §Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Rio de Janeiro, Brazil
| | - Francisco A P Campos
- †Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60455-900, Ceara, Brazil
| |
Collapse
|
15
|
Soares EL, Shah M, Soares AA, Costa JH, Carvalho P, Domont GB, Nogueira FCS, Campos FAP. Proteome analysis of the inner integument from developing Jatropha curcas L. seeds. J Proteome Res 2014; 13:3562-70. [PMID: 25010673 DOI: 10.1021/pr5004505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we performed a systematic proteomic analysis of the inner integument from developing seeds of Jatropha curcas and further explored the protein machinery responsible for generating the carbon and nitrogen sources to feed the growing embryo and endosperm. The inner integument of developing seeds was dissected into two sections called distal and proximal, and proteins were extracted from these sections and from the whole integument and analyzed using an EASY-nanoLC system coupled to an ESI-LTQ-Orbitrap Velos mass spectrometer. We identified 1526, 1192, and 1062 proteins from the proximal, distal, and whole inner integuments, respectively. The identifications include those of peptidases and other hydrolytic enzymes that play a key role in developmental programmed cell death and proteins associated with the cell-wall architecture and modification. Because many of these proteins are differentially expressed within the integument cell layers, these findings suggest that the cells mobilize an array of hydrolases to produce carbon and nitrogen sources from proteins, carbohydrates, and lipids available within the cells. Not least, the identification of several classes of seed storage proteins in the inner integument provides additional evidence of the role of the seed coat as a transient source of reserves for the growing embryo and endosperm.
Collapse
Affiliation(s)
- Emanoella L Soares
- Department of Biochemistry and Molecular Biology, Federal University of Ceara , Campus do Pici - Bl. 907, Fortaleza 60455-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|