1
|
Vashisth S, Kumar P, Chandel VGS, Kumar R, Verma SC, Chandel RS. Unraveling the enigma of root-knot nematodes: from origins to advanced management strategies in agriculture. PLANTA 2024; 260:36. [PMID: 38922545 DOI: 10.1007/s00425-024-04464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION Integrated management strategies, including novel nematicides and resilient cultivars, offer sustainable solutions to combat root-knot nematodes, crucial for safeguarding global agriculture against persistent threats. Root-knot nematodes (RKN) pose a significant threat to a diverse range of host plants, with their obligatory endoparasitic nature leading to substantial agricultural losses. RKN spend much of their lives inside or in contact by secreting plant cell wall-modifying enzymes resulting in the giant cell development for establishing host-parasite relationships. Additionally, inflicting physical harm to host plants, RKN also contributes to disease complexes creation with fungi and bacteria. This review comprehensively explores the origin, history, distribution, and physiological races of RKN, emphasizing their economic impact on plants through gall formation. Management strategies, ranging from cultural and physical to biological and chemical controls, along with resistance mechanisms and marker-assisted selection, are explored. While recognizing the limitations of traditional nematicides, recent breakthroughs in non-fumigant alternatives like fluensulfone, spirotetramat, and fluopyram offer promising avenues for sustainable RKN management. Despite the success of resistance mechanisms like the Mi gene, challenges persist, prompting the need for integrative approaches to tackle Mi-virulent isolates. In conclusion, the review stresses the importance of innovative and resilient control measures for sustainable agriculture, emphasizing ongoing research to address evolving challenges posed by RKN. The integration of botanicals, resistant cultivars, and biological controls, alongside advancements in non-fumigant nematicides, contributes novel insights to the field, laying the ground work for future research directions to ensure the long-term sustainability of agriculture in the face of persistent RKN threats.
Collapse
Affiliation(s)
- Sumit Vashisth
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Vishav Gaurav Singh Chandel
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Subhash Chander Verma
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rajeshwar Singh Chandel
- Department of Entomology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| |
Collapse
|
2
|
Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2387. [PMID: 37376010 DOI: 10.3390/plants12122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Saba Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman Ahamad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
3
|
Abd-Elgawad MMM. Exploiting Plant-Phytonematode Interactions to Upgrade Safe and Effective Nematode Control. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111916. [PMID: 36431051 PMCID: PMC9693997 DOI: 10.3390/life12111916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Plant-parasitic nematodes (PPNs) bring about substantial losses of economic crops globally. With the environmental and health issues facing the use of chemical nematicides, research efforts should focus on providing economically effective and safe control methods. The sound exploitation of plant-PPN interactions is fundamental to such efforts. Initially, proper sampling and extraction techniques should be followed to avoid misleading nematode data. Recent evolutions in plant-PPN interactions can make use of diverse non-molecular and molecular approaches to boost plant defenses. Therefore, PPN control and increasing crop yields through single, sequential, dual-purpose, and simultaneous applications of agricultural inputs, including biocontrol agents, should be seriously attempted, especially within IPM schemes. The use of biologicals would ideally be facilitated by production practices to solve related issues. The full investment of such interactions should employ new views of interdisciplinary specialties in the relevant modern disciplines to optimize the PPN management. Having an accurate grasp of the related molecular events will help in developing tools for PPN control. Nonetheless, the currently investigated molecular plant-PPN interactions favoring plant responses, e.g., resistance genes, RNA interference, marker-assisted selection, proteinase inhibitors, chemo-disruptive peptides, and plant-incorporated protectants, are key factors to expanding reliable management. They may be applied on broader scales for a substantial improvement in crop yields.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Institute, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Lopes-Caitar VS, Nomura RBG, Hishinuma-Silva SM, de Carvalho MCDCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players. PLANTS (BASEL, SWITZERLAND) 2022; 11:2983. [PMID: 36365436 PMCID: PMC9655969 DOI: 10.3390/plants11212983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pratylenchus brachyurus causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) Glycine max genotypes. Differential expression analysis revealed two stages of response to RLN infection and a set of differentially expressed genes (DEGs) in the first stage suggested a pattern-triggered immunity (PTI) in both genotypes. The divergent time-point of DEGs between genotypes was observed four days post-infection, which included the activation of mitogen-activated protein kinase (MAPK) and plant-pathogen interaction genes in the BRS, suggesting the occurrence of an effector-triggered immunity response (ETI) in BRS. The co-expression analyses combined with single nucleotide polymorphism (SNP) uncovered a key element, a transcription factor phytochrome-interacting factor (PIF7) that is a potential regulator of moderate resistance to RLN infection. Two genes for resistance-related leucine-rich repeat (LRR) proteins were found as BRS-specific expressed genes. In addition, alternative splicing analysis revealed an intron retention in a myo-inositol oxygenase (MIOX) transcript, a gene related to susceptibility, may cause a loss of function in BRS.
Collapse
Affiliation(s)
- Valéria Stefania Lopes-Caitar
- Department of Biological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | - Rafael Bruno Guayato Nomura
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Suellen Mika Hishinuma-Silva
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | | | | | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | | |
Collapse
|
5
|
Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. PLANTS 2022; 11:plants11162141. [PMID: 36015444 PMCID: PMC9415668 DOI: 10.3390/plants11162141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Developing control measures of plant-parasitic nematodes (PPNs) rank high as they cause big crop losses globally. The growing awareness of numerous unsafe chemical nematicides and the defects found in their alternatives are calling for rational molecular control of the nematodes. This control focuses on using genetically based plant resistance and exploiting molecular mechanisms underlying plant–nematode interactions. Rapid and significant advances in molecular techniques such as high-quality genome sequencing, interfering RNA (RNAi) and gene editing can offer a better grasp of these interactions. Efficient tools and resources emanating from such interactions are highlighted herein while issues in using them are summarized. Their revision clearly indicates the dire need to further upgrade knowledge about the mechanisms involved in host-specific susceptibility/resistance mediated by PPN effectors, resistance genes, or quantitative trait loci to boost their effective and sustainable use in economically important plant species. Therefore, it is suggested herein to employ the impacts of these techniques on a case-by-case basis. This will allow us to track and optimize PPN control according to the actual variables. It would enable us to precisely fix the factors governing the gene functions and expressions and combine them with other PPN control tactics into integrated management.
Collapse
|
6
|
Hada A, Singh D, Papolu PK, Banakar P, Raj A, Rao U. Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. PLANT CELL REPORTS 2021; 40:2287-2302. [PMID: 34387737 DOI: 10.1007/s00299-021-02767-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE This study establishes possibility of combinatorial silencing of more than one functional gene for their efficacy against root-knot nematode, M. incognita. Root-knot nematodes (RKN) of the genus Meloidogyne are the key important plant parasitic nematodes (PPNs) in agricultural and horticultural crops worldwide. Among RKNs, M. incognita is the most notorious that demand exploration of novel strategies for their management. Due to its sustainable and target-specific nature, RNA interference (RNAi) has gained unprecedented importance to combat RKNs. However, based on the available genomic information and interaction studies, it can be presumed that RKNs are dynamic and not dependent on single genes for accomplishing a particular function. Therefore, it becomes extremely important to consider silencing of more than one gene to establish any synergistic or additive effect on nematode parasitism. In this direction, we have combined three effectors specific to subventral gland cells of M. incognita, Mi-msp1, Mi-msp16, Mi-msp20 as fusion cassettes-1 and two FMRFamide-like peptides, Mi-flp14, Mi-flp18, and Mi-msp20 as fusion cassettes-2 to establish their possible utility for M. incognita management. In vitro RNAi assay in tomato and adzuki bean using these two fusion gene negatively altered nematode behavior in terms of reduced attraction, invasion, development, and reproduction. Subsequently, Nicotiana tabacum plants were transformed with these two fusion gene hairpin RNA-expressing vectors (hpRNA), and characterized via PCR, qRT-PCR, and Southern blot hybridization. Production of siRNAs specific to Mi-flp18 and Mi-msp1 was also confirmed by Northern hybridization. Further, transgenic events expressing single copy insertions of hpRNA constructs of fusion 1 and fusion-2 conferred up to 85% reduction in M. incognita multiplication. Besides, expression quantification revealed a significant reduction in mRNA abundance of target genes (up to 1.8-fold) in M. incognita females extracted from transgenic plants, and provided additional evidence for successful gene silencing.
Collapse
Affiliation(s)
- Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Divya Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ankita Raj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
7
|
Biotechnological advances with applicability in potatoes for resistance against root-knot nematodes. Curr Opin Biotechnol 2021; 70:226-233. [PMID: 34217954 DOI: 10.1016/j.copbio.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Potato production is negatively affected by root-knot nematodes (Meloidogyne spp.). There are no commercially available potato cultivars that are resistant to root-knot nematodes. To reduce the reliance on chemical controls, genetic engineering for nematode resistance in potato shows promise. Genetically modified potatoes that silence a parasitism gene or that express toxic protease inhibitors display reduced nematode infections. Modifying potato immune responses may also offer new opportunities for nematode resistance in potato. Plant defense elicitors, including those secreted by modified bacteria, enhanced resistance against root-knot nematodes in potato. The use of transgenic bacteria as delivery vehicles of defense-related molecules presents several possibilities for sophisticated nematode management and because this does not involve transgenic plants, it may garner greater public acceptance.
Collapse
|
8
|
Mota APZ, Brasileiro ACM, Vidigal B, Oliveira TN, da Cunha Quintana Martins A, Saraiva MADP, de Araújo ACG, Togawa RC, Grossi-de-Sá MF, Guimaraes PM. Defining the combined stress response in wild Arachis. Sci Rep 2021; 11:11097. [PMID: 34045561 PMCID: PMC8160017 DOI: 10.1038/s41598-021-90607-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
Nematodes and drought are major constraints in tropical agriculture and often occur simultaneously. Plant responses to these stresses are complex and require crosstalk between biotic and abiotic signaling pathways. In this study, we explored the transcriptome data of wild Arachis species subjected to drought (A-metaDEG) and the root-knot nematode Meloidogyne arenaria (B-metaDEG) via meta-analysis, to identify core-stress responsive genes to each individual and concurrent stresses in these species. Transcriptome analysis of a nematode/drought bioassay (cross-stress) showed that the set of stress responsive DEGs to concurrent stress is distinct from those resulting from overlapping A- and B-metaDEGs, indicating a specialized and unique response to combined stresses in wild Arachis. Whilst individual biotic and abiotic stresses elicit hormone-responsive genes, most notably in the jasmonic and abscisic acid pathways, combined stresses seem to trigger mainly the ethylene hormone pathway. The overexpression of a cross-stress tolerance candidate gene identified here, an endochitinase-encoding gene (AsECHI) from Arachis stenosperma, reduced up to 30% of M. incognita infection and increased post-drought recovery in Arabidopsis plants submitted to both stresses. The elucidation of the network of cross-stress responsive genes in Arachis contributes to better understanding the complex regulation of biotic and abiotic responses in plants facilitating more adequate crop breeding for combined stress tolerance.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.8532.c0000 0001 2200 7498Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil ,grid.8183.20000 0001 2153 9871Present Address: CIRAD, UMR AGAP, 34398 Montpellier, France ,grid.463758.b0000 0004 0445 8705Present Address: AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Ana Cristina Miranda Brasileiro
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Bruna Vidigal
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Thais Nicolini Oliveira
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Andressa da Cunha Quintana Martins
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Mario Alfredo de Passos Saraiva
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Ana Claudia Guerra de Araújo
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Roberto C. Togawa
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Maria Fatima Grossi-de-Sá
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil ,grid.411952.a0000 0001 1882 0945Universidade Católica de Brasília (UCB)-Genomic Sciences and Biotechnology, Brasilia, DF Brazil
| | - Patricia Messenberg Guimaraes
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| |
Collapse
|
9
|
Philbrick AN, Adhikari TB, Louws FJ, Gorny AM. Meloidogyne enterolobii, a Major Threat to Tomato Production: Current Status and Future Prospects for Its Management. FRONTIERS IN PLANT SCIENCE 2020; 11:606395. [PMID: 33304376 PMCID: PMC7701057 DOI: 10.3389/fpls.2020.606395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 05/07/2023]
Abstract
The guava root-knot nematode, Meloidogyne enterolobii (Syn. M. mayaguensis), is an emerging pathogen to many crops in the world. This nematode can cause chlorosis, stunting, and reduce yields associated with the induction of many root galls on host plants. Recently, this pathogen has been considered as a global threat for tomato (Solanum lycopersicum L.) production due to the lack of known resistance in commercially accepted varieties and the aggressiveness of M. enterolobii. Both conventional morphological and molecular approaches have been used to identify M. enterolobii, an important first step in an integrated management. To combat root-knot nematodes, integrated disease management strategies such as crop rotation, field sanitation, biocontrol agents, fumigants, and resistant cultivars have been developed and successfully used in the past. However, the resistance in tomato varieties mediated by known Mi-genes does not control M. enterolobii. Here, we review the current knowledge on geographic distribution, host range, population biology, control measures, and proposed future strategies to improve M. enterolobii control in tomato.
Collapse
Affiliation(s)
- Ashley N. Philbrick
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Frank J. Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Adrienne M. Gorny
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
10
|
Banakar P, Hada A, Papolu PK, Rao U. Simultaneous RNAi Knockdown of Three FMRFamide-Like Peptide Genes, Mi-flp1, Mi-flp12, and Mi-flp18 Provides Resistance to Root-Knot Nematode, Meloidogyne incognita. Front Microbiol 2020; 11:573916. [PMID: 33193182 PMCID: PMC7644837 DOI: 10.3389/fmicb.2020.573916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/06/2020] [Indexed: 12/03/2022] Open
Abstract
Root-knot nematode, Meloidogyne incognita, is a devastating sedentary endoparasite that causes considerable damage to agricultural crops worldwide. Modern approaches targeting the physiological processes have confirmed the potential of FMRFamide like peptide (FLPs) family of neuromotor genes for nematode management. Here, we assessed the knock down effect of Mi-flp1, Mi-flp12, and Mi-flp18 of M. incognita and their combinatorial fusion cassette on infection and reproduction. Comparative developmental profiling revealed higher expression of all three FLPs in the infective 2nd stage juveniles (J2s). Further, Mi-flp1 expression in J2s could be localized in the ventral pharyngeal nerves near to metacarpal bulb of the central nervous system. In vitro RNAi silencing of three FLPs and their fusion cassette in M. incognita J2s showed that combinatorial silencing is the most effective and affected nematode host recognition followed by reduced penetration ability and subsequent infection into tomato and adzuki bean roots. Northern blot analysis of J2s soaked in fusion dsRNA revealed the presence of siRNA of all three target FLPs establishing successful processing of fusion gene dsRNA in the J2s. Further, evaluation of the fusion gene cassette is done through host-delivered RNAi in tobacco. Transgenic plants with fusion gene RNA-expressing vector were generated in which transgene integration was confirmed by PCR, qRT-PCR, and Southern blot analysis. Transcript accumulation of three FLPs constituting the fusion gene was reduced in the M. incognita females collected from the transgenic plants that provided additional evidence for successful gene silencing. Evaluation of positive T1 transgenic lines against M. incognita brought down the disease burden as indicated by various disease parameters that ultimately reduced the nematode multiplication factor (MF) by 85% compared to the wild-type plants. The study establishes the possibility of simultaneous silencing of more than one FLPs gene for effective management of M. incognita.
Collapse
Affiliation(s)
- Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.,Department of Nematology and Centre for Bio-Nanotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
11
|
Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode. Genes (Basel) 2019; 10:genes10110925. [PMID: 31739481 PMCID: PMC6896013 DOI: 10.3390/genes10110925] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/01/2023] Open
Abstract
The root-knot nematode (RKN) is one of the most dangerous and widespread types of nematodes affecting tomatoes. There are few methods for controlling nematodes in tomatoes. Nature resistance genes (R-genes) are important in conferring resistance against nematodes. These genes that confer resistance to the RKN have already been identified as Mi-1, Mi-2, Mi-3, Mi-4, Mi-5, Mi-6, Mi-7, Mi-8, Mi-9, and Mi-HT. Only five of these genes have been mapped. The major problem is that their resistance breaks down at high temperatures. Some of these genes still work at high temperatures. In this paper, the mechanism and characteristics of these natural resistance genes are summarized. Other difficulties in using these genes in the resistance and how to improve them are also mentioned.
Collapse
|
12
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
13
|
Zhong X, Zhou Q, Cui N, Cai D, Tang G. BvcZR3 and BvHs1pro-1 Genes Pyramiding Enhanced Beet Cyst Nematode ( Heterodera schachtii Schm.) Resistance in Oilseed Rape ( Brassica napus L.). Int J Mol Sci 2019; 20:ijms20071740. [PMID: 30965683 PMCID: PMC6479909 DOI: 10.3390/ijms20071740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 11/16/2022] Open
Abstract
Beet cyst nematode (Heterodera schachtii Schm.) is one of the most damaging pests in sugar beet growing areas around the world. The Hs1pro-1 and cZR3 genes confer resistance to the beet cyst nematode, and both were cloned from sugar beet translocation line (A906001). The translocation line carried the locus from B. procumbens chromosome 1 including Hs1pro-1 gene and resistance gene analogs (RGA), which confer resistance to Heterodera schachtii. In this research, BvHs1pro-1 and BvcZR3 genes were transferred into oilseed rape to obtain different transgenic lines by A. tumefaciens mediated transformation method. The cZR3Hs1pro-1 gene was pyramided into the same plants by crossing homozygous cZR3 and Hs1pro-1 plants to identify the function and interaction of cZR3 and Hs1pro-1 genes. In vitro and in vivo cyst nematode resistance tests showed that cZR3 and Hs1pro-1 plants could be infested by beet cyst nematode (BCN) juveniles, however a large fraction of penetrated nematode juveniles was not able to develop normally and stagnated in roots of transgenic plants, consequently resulting in a significant reduction in the number of developed nematode females. A higher efficiency in inhibition of nematode females was observed in plants expressing pyramiding genes than in those only expressing a single gene. Molecular analysis demonstrated that BvHs1pro-1 and BvcZR3 gene expressions in oilseed rape constitutively activated transcription of plant-defense related genes such as NPR1 (non-expresser of PR1), SGT1b (enhanced disease resistance 1) and RAR1 (suppressor of the G2 allele of skp1). Transcript of NPR1 gene in transgenic cZR3 and Hs1pro-1 plants were slightly up-regulated, while its expression was considerably enhanced in cZR3Hs1pro-1 gene pyramiding plants. The expression of EDS1 gene did not change significantly among transgenic cZR3, Hs1pro-1 and cZR3Hs1pro-1 gene pyramiding plants and wild type. The expression of SGT1b gene was slightly up-regulated in transgenic cZR3 and Hs1pro-1 plants compared with the wild type, however, its expression was not changed in cZR3Hs1pro-1 gene pyramiding plant and had no interaction effect. RAR1 gene expression was significantly up-regulated in transgenic cZR3 and cZR3Hs1pro-1 genes pyramiding plants, but almost no expression was found in Hs1pro-1 transgenic plants. These results show that nematode resistance genes from sugar beet were functional in oilseed rape and conferred BCN resistance by activation of a CC-NBS-LRR R gene mediated resistance response. The gene pyramiding had enhanced resistance, thus offering a novel approach for the BCN control by preventing the propagation of BCN in oilseed rape. The transgenic oilseed rape could be used as a trap crop to offer an alternative method for beet cyst nematode control.
Collapse
Affiliation(s)
- Xuanbo Zhong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Qizheng Zhou
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Nan Cui
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, D-24118 Kiel, Germany.
| | - Guixiang Tang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
14
|
Ali MA, Shahzadi M, Zahoor A, Dababat AA, Toktay H, Bakhsh A, Nawaz MA, Li H. Resistance to Cereal Cyst Nematodes in Wheat and Barley: An Emphasis on Classical and Modern Approaches. Int J Mol Sci 2019; 20:E432. [PMID: 30669499 PMCID: PMC6359373 DOI: 10.3390/ijms20020432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 11/21/2022] Open
Abstract
Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals like wheat and barley. These nematodes alone are estimated to reduce production of crops by 10% globally. This necessitates a huge enhancement of nematode resistance in cereal crops against CCNs. Nematode resistance in wheat and barley in combination with higher grain yields has been a preferential research area for cereal nematologists. This usually involved the targeted genetic exploitations through natural means of classical selection breeding of resistant genotypes and finding quantitative trait luci (QTLs) associated with resistance genes. These improvements were based on available genetic diversity among the crop plants. Recently, genome-wide association studies have widely been exploited to associate nematode resistance or susceptibility with particular regions of the genome. Use of biotechnological tools through the application of various transgenic strategies for enhancement of nematode resistance in various crop plants including wheat and barley had also been an important area of research. These modern approaches primarily include the use of gene silencing, exploitation of nematode effector genes, proteinase inhibitors, chemodisruptive peptides and a combination of one or more of these approaches. Furthermore, the perspective genome editing technologies including CRISPR-Cas9 could also be helpful for improving CCN resistance in wheat and barley. The information provided in this review will be helpful to enhance resistance against CCNs and will attract the attention of the scientific community towards this neglected area.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Mahpara Shahzadi
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Adil Zahoor
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | | | - Halil Toktay
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey.
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey.
| | | | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
15
|
Rasoolizadeh A, Goulet MC, Guay JF, Cloutier C, Michaud D. Population-associated heterogeneity of the digestive Cys protease complement in Colorado potato beetle, Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:125-133. [PMID: 28267460 DOI: 10.1016/j.jinsphys.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/19/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Herbivorous insects use complex protease complements to process plant proteins, useful to adjust their digestive functions to the plant diet and to elude the antidigestive effects of dietary protease inhibitors. We here assessed whether basic profiles and diet-related adjustments of the midgut protease complement may vary among populations of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). Two laboratory colonies of this insect were used as models, derived from insect samples collected in potato fields ∼1200km distant from each other in North America. Synchronized 4th-instar larvae reared on potato were kept on this plant, or switched to tomato or eggplant, to compare their midgut cathepsin activities and content of intestain Cys proteases under different diet regimes. Cathepsin D activity, cathepsin L activity, cathepsin B activity and total intestain content shortly after larval molting on potato leaves were about two times lower in one population compared to the other. By comparison, cathepsin D activity, cathepsin B activity, total intestain content and relative abundance of the most prominent intestain families were similar in the two populations after three days regardless of the plant diet, unlike cathepsin L activity and less prominent intestain families showing population-associated variability. Variation in Cys protease profiles translated into the differential efficiency of a Cys protease inhibitor, tomato cystatin SlCYS8, to inhibit cathepsin L activity in midgut extracts of the two insect groups. Despite quantitative differences, SlCYS8 single variants engineered to strongly inhibit Cys proteases showed improved potency against cathepsin L activity of either population. These data suggest the feasibility of designing cystatins to control L. decemlineata that are effective against different populations of this insect. They underline, on the other hand, the practical relevance of considering natural variability of the protease complement among L. decemlineata target populations, eventually determinant in the success or failure of cystatin-based control strategies on a large-scale basis.
Collapse
Affiliation(s)
- Asieh Rasoolizadeh
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Claire Goulet
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Conrad Cloutier
- Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dominique Michaud
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
16
|
Ali MA, Azeem F, Abbas A, Joyia FA, Li H, Dababat AA. Transgenic Strategies for Enhancement of Nematode Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:750. [PMID: 28536595 PMCID: PMC5422515 DOI: 10.3389/fpls.2017.00750] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/21/2017] [Indexed: 05/19/2023]
Abstract
Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of AgricultureFaisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of AgricultureFaisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Amjad Abbas
- Department of Plant Pathology, University of AgricultureFaisalabad, Pakistan
| | - Faiz A. Joyia
- Centre of Agricultural Biochemistry and Biotechnology, University of AgricultureFaisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | | |
Collapse
|
17
|
Rasoolizadeh A, Munger A, Goulet MC, Sainsbury F, Cloutier C, Michaud D. Functional proteomics-aided selection of protease inhibitors for herbivore insect control. Sci Rep 2016; 6:38827. [PMID: 27958307 PMCID: PMC5153846 DOI: 10.1038/srep38827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/15/2016] [Indexed: 11/09/2022] Open
Abstract
Studies have reported the potential of protease inhibitors to engineer insect resistance in transgenic plants but the general usefulness of this approach in crop protection still remains to be established. Insects have evolved strategies to cope with dietary protease inhibitors, such as the use of proteases recalcitrant to inhibition, that often make the selection of effective inhibitors very challenging. Here, we used a functional proteomics approach for the ‘capture’ of Cys protease targets in crude protein extracts as a tool to identify promising cystatins for plant improvement. Two cystatins found to differ in their efficiency to capture Cys proteases of the coleopteran pest Leptinotarsa decemlineata also differed in their usefulness to produce transgenic potato lines resistant to this insect. Plants expressing the most potent cystatin at high level had a strong repressing effect on larval growth and leaf intake, while plants expressing the weakest cystatin showed no effect on both two parameters compared to untransformed parental line used for genetic transformation. Our data underline the relevance of considering the whole range of possible protease targets when selecting an inhibitor for plant pest control. They also confirm the feasibility of developing cystatin-expressing transgenics resistant to a major pest of potato.
Collapse
Affiliation(s)
| | - Aurélie Munger
- Département de phytologie, Université Laval, Québec City, QC, Canada
| | | | - Frank Sainsbury
- Département de phytologie, Université Laval, Québec City, QC, Canada
| | - Conrad Cloutier
- Département de biologie, Université Laval, Québec City QC, Canada
| | - Dominique Michaud
- Département de phytologie, Université Laval, Québec City, QC, Canada
| |
Collapse
|
18
|
Schouteden N, De Waele D, Panis B, Vos CM. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front Microbiol 2015; 6:1280. [PMID: 26635750 PMCID: PMC4646980 DOI: 10.3389/fmicb.2015.01280] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.
Collapse
Affiliation(s)
- Nele Schouteden
- Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Dirk De Waele
- Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Bart Panis
- Bioversity International, Heverlee, Belgium
| | - Christine M. Vos
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Gent, Belgium
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| |
Collapse
|