1
|
Yousefzadeh-Valendeh S, Fattahi M, Asghari B, Alizadeh Z. Dandelion flower-fabricated Ag nanoparticles versus synthetic ones with characterization and determination of photocatalytic, antioxidant, antibacterial, and α-glucosidase inhibitory activities. Sci Rep 2023; 13:15444. [PMID: 37723218 PMCID: PMC10507034 DOI: 10.1038/s41598-023-42756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
In the present work, Silver nanoparticles (AgNPs) were fabricated through the dandelion flower hydroalcoholic extract, and their properties were characterized by FTIR, XRD, UV visible, SEM, and EDX. The results demonstrated that the average diameter of the green fabricated AgNPs is 45-55 nm (G-AgNPs). The antioxidant, antimicrobial, antidiabetic, and photocatalytic properties of G-AgNPs were compared with two commercially available different diameter sizes (20 and 80-100 nm) of AgNPs (C-AgNPs1- and C-AgNPs2, respectively). The sample's capacity for antioxidants was evaluated by DPPH free radical scavenging method. The consequences showed that G-AgNPs have higher radical scavenging activity (47.8%) than C-AgNPs2 (39.49%) and C-AgNPs1 (33.91%). To investigate the photocatalytic property, methylene blue dye was used. The results displayed that G-AgNPs is an effective photo-catalyst compared to C-AgNPs2 and C-AgNPs1, which respectively have an inhibition potential of 75.22, 51.94, and 56.65%. Also, the antimicrobial capacity of nanoparticles was assayed against, the gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria. The results indicated that G-AgNPs could effectively inhibit the growth of both bacteria, compared to C-AgNPs1 and C-AgNPs2. Finally, G-AgNPs exhibited a considerable α-glucosidase enzyme inhibitory effect (88.37%) in comparison with C-AgNPs1 (61.7%) and C-AgNPs2 (50.5%).
Collapse
Affiliation(s)
| | - Mohammad Fattahi
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Behvar Asghari
- Department of Horticultural Sciences Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Alizadeh
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Barashkova AS, Ryazantsev DY, Zhuravleva AS, Sharoyko VV, Rogozhin EA. Recombinant Fusion Protein Containing Plant Nigellothionin Regulates the Growth of Food-Spoiling Fungus ( Aspergillus niger). Foods 2023; 12:3002. [PMID: 37628001 PMCID: PMC10453017 DOI: 10.3390/foods12163002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to obtain a recombinant chimeric protein named trx-NsW2 via theheterologous expression of the multifunctional antimicrobial peptide nigellothionin from black cumin (Nigella sativa L.) seeds in the Escherichia coli system. The protein was purified using a combination of Ni-NTA affinity chromatography and reversed-phase HPLC. Based on the HPLC calibration, the total yield of the protein was calculated to be 650 mg/L of bacterial culture. The fungistatic activity of trx-NsW2 against the food-spoiling fungus Aspergillus niger was demonstrated as itinhibited the maturation of conidiawithout affecting conidial germination or fungal growth. In contrast to mature nigellothionin NsW2, the fusion protein showeda low level of cytotoxicity towards both normal and tumor cell lines at concentrationsof up to 100-200 µM. Interestingly, at lower concentrations, it even stimulated cytokinesis. These findings are of critical importance for applying chimeric antimicrobial proteins obtained via microbiological synthesis in applied science.
Collapse
Affiliation(s)
- Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
- All-Russian Institute for Plant Protection, Pushkin 196608, Russia
| | - Dmitry Yu. Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
| | | | - Vladimir V. Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia;
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
- All-Russian Institute for Plant Protection, Pushkin 196608, Russia
| |
Collapse
|
3
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Wang R, Li W, Fang C, Zheng X, Liu C, Huang Q. Extraction and identification of new flavonoid compounds in dandelion Taraxacum mongolicum Hand.-Mazz. with evaluation of antioxidant activities. Sci Rep 2023; 13:2166. [PMID: 36750602 PMCID: PMC9905065 DOI: 10.1038/s41598-023-28775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Due to the interest in the potential pharmacological application of dandelion, the chemical constituents and activities of Taraxacum mongolicum Hand.-Mazz were studied. Box-Behnken response surface methodology was employed to optimize the protocol for extraction of flavonoid from dandelion. The molecular structures of different flavonoid compounds were acquired and analyzed by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Several major flavonoid compounds were isolated and purified, namely, hesperetin-5'-O-β-rhamnoglucoside, hesperetin-7-glucuronide, kaempferol-3-glucoside, baicalein, hyperseroside, which were extracted for the first time from dandelion. Hesperetin-5'-O-β-rhamnoglucoside was identified as a new type of flavonoid that had never reported in the literature. This new flavonoid has outstanding antioxidant activity, as shown by its IC50 value (8.72 mg/L) for scavenging DPPH free radicals. The determination of the structure-related antioxidant activities could be interpreted based on DFT calculations. As such, we have not only illustrated the rich flavonoid contents in Taraxacum mongolicum Hand.-Mazz, but also revealed new types of flavonoid compounds in dandelion in terms of structure and antioxidant properties.
Collapse
Affiliation(s)
- Rong Wang
- Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230026, China.,School of Environment and Energy Engineering, Anhui Jianzhu University, Heifei, 230601, China
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Jianzhu University, Heifei, 230601, China
| | - Cao Fang
- Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230026, China
| | - Xinxin Zheng
- Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230026, China
| | - Chao Liu
- Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230026, China
| | - Qing Huang
- Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
6
|
Odintsova TI, Slezina MP, Istomina EA. Defensins of Grasses: A Systematic Review. Biomolecules 2020; 10:E1029. [PMID: 32664422 PMCID: PMC7407236 DOI: 10.3390/biom10071029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
The grass family (Poaceae) is one of the largest families of flowering plants, growing in all climatic zones of all continents, which includes species of exceptional economic importance. The high adaptability of grasses to adverse environmental factors implies the existence of efficient resistance mechanisms that involve the production of antimicrobial peptides (AMPs). Of plant AMPs, defensins represent one of the largest and best-studied families. Although wheat and barley seed γ-thionins were the first defensins isolated from plants, the functional characterization of grass defensins is still in its infancy. In this review, we summarize the current knowledge of the characterized defensins from cultivated and selected wild-growing grasses. For each species, isolation of defensins or production by heterologous expression, peptide structure, biological activity, and structure-function relationship are described, along with the gene expression data. We also provide our results on in silico mining of defensin-like sequences in the genomes of all described grass species and discuss their potential functions. The data presented will form the basis for elucidation of the mode of action of grass defensins and high adaptability of grasses to environmental stress and will provide novel potent molecules for practical use in medicine and agriculture.
Collapse
|
7
|
Barashkova AS, Rogozhin EA. Isolation of antimicrobial peptides from different plant sources: Does a general extraction method exist? PLANT METHODS 2020; 16:143. [PMID: 33110440 PMCID: PMC7585225 DOI: 10.1186/s13007-020-00687-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 05/06/2023]
Abstract
Plants are good sources of biologically active compounds with antimicrobial activity, including polypeptides. Antimicrobial peptides (AMPs) represent one of the main barriers of plant innate immunity to environmental stress factors and are attracting much research interest. There are some extraction methods for isolation of AMPs from plant organs based on the type of extractant and initial fractionation stages. But most methods are directed to obtain some specific structural types of AMPs and do not allow to understand the molecular diversity of AMP inside a whole plant. In this mini-review, we suggest an optimized scheme of AMP isolation from plants followed by obtaining a set of peptides belonging to various structural families. This approach can be performed for large-scale screening of plants to identify some novel or homologous AMPs for fundamental and applied studies.
Collapse
Affiliation(s)
- Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow, Russia 117997
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow, Russia 117997
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow, Russia 119021
| |
Collapse
|
8
|
Moyer TB, Heil LR, Kirkpatrick CL, Goldfarb D, Lefever WA, Parsley NC, Wommack AJ, Hicks LM. PepSAVI-MS Reveals a Proline-rich Antimicrobial Peptide in Amaranthus tricolor. JOURNAL OF NATURAL PRODUCTS 2019; 82:2744-2753. [PMID: 31557021 PMCID: PMC6874829 DOI: 10.1021/acs.jnatprod.9b00352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Traditional medicinal plants are a rich source of antimicrobials; however, the bioactive peptide constituents of most ethnobotanical species remain largely unexplored. Herein, PepSAVI-MS, a mass spectrometry-based peptidomics pipeline, was implemented for antimicrobial peptide (AMP) discovery in the medicinal plant Amaranthus tricolor. This investigation revealed a novel 1.7 kDa AMP with strong activity against Escherichia coli ATCC 25922, deemed Atr-AMP1. Initial efforts to determine the sequence of Atr-AMP1 utilized chemical derivatization and enzymatic digestion to provide information about specific residues and post-translational modifications. EThcD (electron-transfer/higher-energy collision dissociation) produced extensive backbone fragmentation and facilitated de novo sequencing, the results of which were consistent with orthogonal characterization experiments. Additionally, multistage HCD (higher-energy collisional dissociation) facilitated discrimination between isobaric leucine and isoleucine. These results revealed a positively charged proline-rich peptide present in a heterogeneous population of multiple peptidoforms, possessing several post-translational modifications including a disulfide bond, methionine oxidation, and proline hydroxylation. Additional bioactivity screening of a simplified fraction containing Atr-AMP1 revealed activity against Staphylococcus aureus LAC, demonstrating activity against both a Gram-negative and a Gram-positive bacterial species unlike many known short chain proline-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Tessa B. Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - Lilian R. Heil
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - Christine L. Kirkpatrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - William A. Lefever
- Department of Chemistry, High Point University, High Point, North Carolina United States
| | - Nicole C. Parsley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, North Carolina United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| |
Collapse
|
9
|
Gao C, Kong S, Guo B, Liang X, Duan H, Li D. Antidepressive Effects of Taraxacum Officinale in a Mouse Model of Depression Are Due to Inhibition of Corticosterone Levels and Modulation of Mitogen-Activated Protein Kinase Phosphatase-1 (Mkp-1) and Brain-Derived Neurotrophic Factor (Bdnf) Expression. Med Sci Monit 2019; 25:389-394. [PMID: 30636257 PMCID: PMC6340315 DOI: 10.12659/msm.912922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Depression is a common disorder linked with high levels of chronicity, psycho-social and physical problems, and suicide. Here, we assessed the antidepressant effects of the hydromethanolic extract of Taraxacum officinale and investigated the underlying mechanism. MATERIAL AND METHODS Antidepressant effects were examined by use of the tail suspension test (TST). Concentrations of corticosterone, dopamine, noradrenaline, and adrenaline were examined by biochemical assays. The mRNA expression was assessed by quantitative RT-PCR. Phytochemical analysis was performed by LC/MS. RESULTS The results showed that the extract at the dosage of 50 and 100 mg/kg significantly (p<0.01) alleviated the TST-induced immobility in the mice, and the effects were comparable to the antidepressant drug Bupropion, which was used as the positive control. Investigation of the underlying mechanism revealed that the T. officinale extract exerts it effects by significantly (p<0.05) decreasing the levels of corticosterone and increasing the concentrations of dopamine, noradrenaline, and adrenaline. Further, the extract also increased the expression of brain-derived neurotrophic factor (Bdnf), which was associated with significant (p<0.05) decrease in the expression of mitogen-activated protein kinase phosphatase-1 (Mkp-1), indicative of the antidepressant potential of T. officinale. Finally, the active constituents of the extract, which include isoetin, hesperidin, naringenin, Kaempferol, sinapinic, and gallic acid, were also identified, which could potentially be responsible for its antidepressant effects. CONCLUSIONS In conclusion, T. officinale exerts significant antidepressant effects in a mouse model of depression by inhibition of corticosterone levels and modulation of Mkp-1 and Bdnf expression.
Collapse
Affiliation(s)
- Cunyou Gao
- Jiading District Mental Health Center, Shanghai, China (mainland)
| | - Suli Kong
- Jiading District Mental Health Center, Shanghai, China (mainland).,Mental Diseases Prevention and Treatment Institute of Chinese People's Liberation Army (PLA), PLA 91st Central Hospital, Jiaozuo, Henan, China (mainland)
| | - Benyu Guo
- Jiading District Mental Health Center, Shanghai, China (mainland)
| | - Xuejun Liang
- Mental Diseases Prevention and Treatment Institute of Chinese People's Liberation Army (PLA), PLA 91st Central Hospital, Jiaozuo, Henan, China (mainland)
| | - Huifeng Duan
- Mental Diseases Prevention and Treatment Institute of Chinese People's Liberation Army (PLA), PLA 91st Central Hospital, Jiaozuo, Henan, China (mainland)
| | - Donghe Li
- Mental Diseases Prevention and Treatment Institute of Chinese People's Liberation Army (PLA), PLA 91st Central Hospital, Jiaozuo, Henan, China (mainland)
| |
Collapse
|
10
|
Shelenkov AA, Slavokhotova AA, Odintsova TI. Cysmotif Searcher Pipeline for Antimicrobial Peptide Identification in Plant Transcriptomes. BIOCHEMISTRY (MOSCOW) 2018; 83:1424-1432. [PMID: 30482154 DOI: 10.1134/s0006297918110135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper, we present the new Cysmotif searcher pipeline for identification of various antimicrobial peptides (AMPs), the most important components of innate immunity, in plant transcriptomes. Cysmotif searcher reveals and classifies short cysteine-rich amino acid sequences containing an open reading frame and a signal peptide cleavage site. Due to the combination of various search methods, Cysmotif searcher allows to obtain the most complete repertoire of AMPs for one or more transcriptomes in a short amount of time. The pipeline performance is estimated on the model plant Arabidopsis thaliana and nine other plants, including cultivated and wild species. The obtained results are compared to the existing annotation (A. thaliana) and results of conventional homology search (other plants). The comparison is carried out for known families of plant AMPs and newly discovered peptides that could not be assigned to existing families. The applicability of Cysmotif searcher in detecting new AMPs is discussed, and some practical recommendations on the pipeline usage for end users are given. The Cysmotif searcher pipeline is free for academic use and can be downloaded from Github (http://github.com/fallandar/cysmotifsearcher).
Collapse
Affiliation(s)
- A A Shelenkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia. .,Central Research Institute of Epidemiology, Rospotrebnadzor, Moscow, 111123, Russia
| | - A A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - T I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| |
Collapse
|
11
|
Characterization of Hydroxyproline-Containing Hairpin-Like Antimicrobial Peptide EcAMP1-Hyp from Barnyard Grass ( Echinochloa crusgalli L.) Seeds: Structural Identification and Comparative Analysis of Antifungal Activity. Int J Mol Sci 2018; 19:ijms19113449. [PMID: 30400225 PMCID: PMC6274906 DOI: 10.3390/ijms19113449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/04/2022] Open
Abstract
Herein, we describe a modified form of the antimicrobial hairpin-like peptide EcAMP1, isolated from barnyard grass (E. crusgalli) seeds, which is structurally characterized by a combination of high-pressure liquid chromatography, mass spectrometry, and automated Edman sequencing. This derivate has a single amino acid substitution (Pro19Hyp) in the second α-helical region of the molecule, which is critical for the formation of the hydrophobic core and the secondary structure elements. Comparing the antifungal activity of these two peptides, we found that the modified EcAMP1-Hyp had a significantly weaker activity towards the most-sensitive plant pathogenic fungus Fusarium solani. Molecular dynamics simulations and in vitro binding to the commercial polysaccharides allowed us to conclude that the Pro-19 residue is important for binding to carbohydrates located in the spore cell wall and it chiefly exhibits a fungistatic action representing the hyphal growth inhibition. These data are novel and significant for understanding a role of α-hairpinins in plant immunity.
Collapse
|
12
|
Abstract
In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.
Collapse
|