1
|
McGuiness PN, Reid JB, Foo E. The influence of ethylene, gibberellins and brassinosteroids on energy and nitrogen-fixation metabolites in nodule tissue. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110846. [PMID: 33691972 DOI: 10.1016/j.plantsci.2021.110846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 05/12/2023]
Abstract
Legume nodules are a unique plant organ that contain nitrogen-fixing rhizobial bacteria. For this interaction to be mutually beneficial, plant and bacterial metabolism must be precisely co-ordinated. Plant hormones are known to play essential roles during the establishment of legume-rhizobial symbioses but their role in subsequent nodule metabolism has not been explored in any depth. The plant hormones brassinosteroids, ethylene and gibberellins influence legume infection, nodule number and in some cases nodule function. In this paper, the influence of these hormones on nodule metabolism was examined in a series of well characterised pea mutants with altered hormone biosynthesis or response. A targeted set of metabolites involved in nutrient exchange and nitrogen fixation was examined in nodule tissue of mutant and wild type plants. Gibberellin-deficiency had a major negative impact on the level of several major dicarboxylates supplied to rhizobia by the plant and also led to a significant deficit in the amino acids involved in glutamine-aspartate transamination, consistent with the limited bacteroid development and low fixation rate of gibberellin-deficient na mutant nodules. In contrast, no major effects of brassinosteroid-deficiency or ethylene-insensitivity on the key metabolites in these pathways were found. Therefore, although all three hormones influence infection and nodule number, only gibberellin is important for the establishment of a functional nodule metabolome.
Collapse
Affiliation(s)
- Peter N McGuiness
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - James B Reid
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
2
|
Oladzad A, González A, Macchiavelli R, de Jensen CE, Beaver J, Porch T, McClean P. Genetic Factors Associated With Nodulation and Nitrogen Derived From Atmosphere in a Middle American Common Bean Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576078. [PMID: 33384700 PMCID: PMC7769817 DOI: 10.3389/fpls.2020.576078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Among grain legume crops, common beans (Phaseolus vulgaris L.) are considered to have poor biological nitrogen (N2) fixation (BNF) capabilities although variation in N2 fixing capabilities exists within the species. The availability of genetic panel varying in BNF capacity and a large-scale single nucleotide polymorphism (SNP) data set for common bean provided an opportunity to discover genetic factors associated with N2 fixation among genotypes in the Middle American gene pool. Using nodulation and percentage of N2-derived from atmosphere (%NDFA) data collected from field trials, at least 11 genotypes with higher levels of BNF capacity were identified. Genome-wide association studies (GWASs) detected both major and minor effects that control these traits. A major nodulation interval at Pv06:28.0-28.27 Mbp was discovered. In this interval, the peak SNP was located within a small GTPase that positively regulates cellular polarity and growth of root hair tips. Located 20 kb upstream of this peak SNP is an auxin-responsive factor AUX/indole acetic auxin (IAA)-related gene involved in auxin transportation during root nodulation. For %NDFA, nitrate (NO3 -) transporters, NRT1:2 and NRT1.7 (Pv02:8.64), squamosa promoter binding transcriptome factor (Pv08:28.42), and multi-antimicrobial extrusion protein (MATE) efflux family protein (Pv06:10.91) were identified as candidate genes. Three additional QTLs were identified on chromosomes Pv03:5.24, Pv09:25.89, and Pv11: 32.89 Mbp. These key candidate genes from both traits were integrated with previous results on N2 fixation to describe a BNF pathway.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Abiezer González
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Raul Macchiavelli
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | - James Beaver
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Tim Porch
- USDA-ARS, Tropical Agriculture Research Station, Mayagüez, Puerto Rico
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
3
|
Wang Q, Yung WS, Wang Z, Lam HM. The histone modification H3K4me3 marks functional genes in soybean nodules. Genomics 2020; 112:5282-5294. [PMID: 32987152 DOI: 10.1016/j.ygeno.2020.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen fixation in legumes requires the development of specialized organs called root nodules. Here we characterized the high-confidence transcriptome and genome-wide patterns of H3K4me3 marks in soybean roots and mature nodules symbiotic with Sinorhizobium fredii. Changes in H3K4me3 levels were positively associated with the transcription levels of functional genes in the nodules. The up-regulation of H3K4me3 levels was not only present in leghaemoglobin and nodulin-related genes, but also in genes involved in nitrogen and carbon metabolic pathways. In addition, genes regulating the transmembrane transport of metal ions, phosphates, sulphates, peptides, and sugars were differentially modified. On the contrary, a loss of H3K4me3 marks was found in several key transcription factor genes and was correlated with the down-regulation of the defense-related network in nodules, which could contribute to nodule maintenance. All these findings demonstrate massive reprogramming of gene expressions via alterations in H3K4me3 levels in the genes in mature soybean nodules.
Collapse
Affiliation(s)
- Qianwen Wang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Shing Yung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
4
|
Barraza A, Vizuet-de-Rueda JC, Alvarez-Venegas R. Highly diverse root endophyte bacterial community is driven by growth substrate and is plant genotype-independent in common bean ( Phaseolus vulgaris L.). PeerJ 2020; 8:e9423. [PMID: 32617194 PMCID: PMC7323714 DOI: 10.7717/peerj.9423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet with an essential role in sustainable agriculture mostly based on the symbiotic relationship established between this legume and rhizobia, a group of bacteria capable of fixing atmospheric nitrogen in the roots nodules. Moreover, root-associated bacteria play an important role in crop growth, yield, and quality of crop products. This is particularly true for legume crops forming symbiotic relationships with rhizobia, for fixation of atmospheric N2. The main objective of this work is to assess the substrate and genotype effect in the common bean (Phaseolus vulgaris L.) root bacterial community structure. To achieve this goal, we applied next-generation sequencing coupled with bacterial diversity analysis. The analysis of the bacterial community structures between common bean roots showed marked differences between substrate types regardless of the genotype. Also, we were able to find several phyla conforming to the bacterial community structure of the common bean roots, mainly composed by Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes. Therefore, we determined that the substrate type was the main factor that influenced the bacterial community structure of the common bean roots, regardless of the genotype, following a substrate-dependent pattern. These guide us to develop efficient and sustainable strategies for crop field management based on the soil characteristics and the bacterial community that it harbors.
Collapse
Affiliation(s)
- Aarón Barraza
- Programa de Agricultura en Zonas Áridas, CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Juan Carlos Vizuet-de-Rueda
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Raúl Alvarez-Venegas
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Shamseldin A, Velázquez E. The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review. World J Microbiol Biotechnol 2020; 36:63. [PMID: 32314065 DOI: 10.1007/s11274-020-02839-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Phaseolus vulgaris L. (common bean) is a legume indigenous to American countries currently cultivated in all continents, which is nodulated by different rhizobial species and symbiovars. Most of species able to nodulate this legume worldwide belong to the genus Rhizobium, followed by those belonging to the genera Ensifer (formerly Sinorhizobium) and Pararhizobium (formerly Rhizobium) and minority by species of the genus Bradyrhizobium. All these genera belong to the phylum alpha-Proteobacteria, but the nodulation of P. vulgaris has also been reported for some species belonging to Paraburkholderia and Cupriavidus from the beta-Proteobacteria. Several species nodulating P. vulgaris were originally isolated from nodules of this legume in American countries and are linked to the symbiovars phaseoli and tropici, which are currently present in other continents probably because they were spread in their soils together with the P. vulgaris seeds. In addition, this legume can be nodulated by species and symbiovars originally isolated from nodules of other legumes due its high promiscuity, a concept currently related with the ability of a legume to be nodulated by several symbiovars rather than by several species. In this article we review the species and symbiovars able to nodulate P. vulgaris in different countries and continents and the challenges on the study of the P. vulgaris endosymbionts diversity in those countries where they have not been studied yet, that will allow to select highly effective rhizobial strains in order to guarantee the success of P. vulgaris inoculation.
Collapse
Affiliation(s)
- Abdelaal Shamseldin
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt.
| | - Encarna Velázquez
- Departamento de Microbiología Y Genética and CIALE, Universidad de Salamanca, Salamanca, Spain.,Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
6
|
Song GQ, Han X, Wiersma AT, Zong X, Awale HE, Kelly JD. Induction of competent cells for Agrobacterium tumefaciens-mediated stable transformation of common bean (Phaseolus vulgaris L.). PLoS One 2020; 15:e0229909. [PMID: 32134988 PMCID: PMC7058285 DOI: 10.1371/journal.pone.0229909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
Stable transformation of common bean (Phaseolus vulgaris L.) has been successful, to date, only using biolistic-mediated transformation and shoot regeneration from meristem-containing embryo axes. In this study, using precultured embryo axes, and optimal co-cultivation conditions resulted in a successful transformation of the common bean cultivar Olathe using Agrobacterium tumefaciens strain EHA105. Plant regeneration through somatic embryogenesis was attained through the preculture of embryo axes for 12 weeks using induced competent cells for A. tumefaciens-mediated gene delivery. Using A. tumefaciens at a low optical density (OD) of 0.1 at a wavelength of 600 nm for infection and 4-day co-cultivation, compared to OD600 of 0.5, increased the survival rate of the inoculated explants from 23% to 45%. Selection using 0.5 mg L-1 glufosinate (GS) was effective to identify transformed cells when the bialaphos resistance (bar) gene under the constitutive 35S promoter was used as a selectable marker. After an 18-week selection period, 1.5% -2.5% inoculated explants, in three experiments with a total of 600 explants, produced GS-resistant plants through somatic embryogenesis. The expression of bar was confirmed in first- and second-generation seedlings of the two lines through reverse polymerase chain reaction. Presence of the bar gene was verified through genome sequencing of two selected transgenic lines. The induction of regenerable, competent cells is key for the successful transformation, and the protocols described may be useful for future transformation of additional Phaseolus germplasm.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource & Outreach Center, Department of Horticulture, Michigan State University, East Lansing, Michigan, United Sates of America
- * E-mail:
| | - Xue Han
- Plant Biotechnology Resource & Outreach Center, Department of Horticulture, Michigan State University, East Lansing, Michigan, United Sates of America
| | - Andrew T. Wiersma
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Xiaojuan Zong
- Plant Biotechnology Resource & Outreach Center, Department of Horticulture, Michigan State University, East Lansing, Michigan, United Sates of America
| | - Halima E. Awale
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - James D. Kelly
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
7
|
Díaz-Valle A, López-Calleja AC, Alvarez-Venegas R. Enhancement of Pathogen Resistance in Common Bean Plants by Inoculation With Rhizobium etli. FRONTIERS IN PLANT SCIENCE 2019; 10:1317. [PMID: 31695715 PMCID: PMC6818378 DOI: 10.3389/fpls.2019.01317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Symbiotic Rhizobium-legume associations are mediated by exchange of chemical signals that eventually result in the development of a nitrogen-fixing nodule. Such signal interactions are thought to be at the center of the plants' capacity either to activate a defense response or to suppress the defense response to allow colonization by symbiotic bacteria. In addition, the colonization of plant roots by rhizobacteria activates an induced condition of improved defensive capacity in plants known as induced systemic resistance, based on "defense priming," which protects unexposed plant tissues from biotic stress.Here, we demonstrate that inoculation of common bean plants with Rhizobium etli resulted in a robust resistance against Pseudomonas syringae pv. phaseolicola. Indeed, inoculation with R. etli was associated with a reduction in the lesion size caused by the pathogen and lower colony forming units compared to mock-inoculated plants. Activation of the induced resistance was associated with an accumulation of the reactive oxygen species superoxide anion (O2 -) and a faster and stronger callose deposition. Transcription of defense related genes in plants treated with R. etli exhibit a pattern that is typical of the priming response. In addition, R. etli-primed plants developed a transgenerational defense memory and could produce offspring that were more resistant to halo blight disease. R. etli is a rhizobacteria that could reduce the proliferation of the virulent strain P. syringae pv. phaseolicola in common bean plants and should be considered as a potentially beneficial and eco-friendly tool in plant disease management.
Collapse
|