1
|
Caccialupi G, Milc J, Caradonia F, Nasar MF, Francia E. The Triticeae CBF Gene Cluster-To Frost Resistance and Beyond. Cells 2023; 12:2606. [PMID: 37998341 PMCID: PMC10670769 DOI: 10.3390/cells12222606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. Triticeae crops seem to share common mechanisms characterized, however, by some peculiar aspects of the response to stress, highlighting a combined landscape of single-nucleotide variants and copy number variation involving CBF members of subgroup IV. Moreover, while chromosome 5 ploidy appears to confer species-specific levels of resistance, an important involvement of the ICE factor might explain the greater tolerance of rye. By unraveling the genetic basis of abiotic stress tolerance, researchers can develop resilient varieties better equipped to withstand extreme environmental conditions. Hence, advancing our knowledge of CBFs and their interactions represents a promising avenue for improving crop resilience and food security.
Collapse
Affiliation(s)
- Giovanni Caccialupi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (J.M.); (F.C.); (M.F.N.); (E.F.)
| | | | | | | | | |
Collapse
|
2
|
Guerra D, Morcia C, Badeck F, Rizza F, Delbono S, Francia E, Milc JA, Monostori I, Galiba G, Cattivelli L, Tondelli A. Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:553-569. [PMID: 34757472 PMCID: PMC8866391 DOI: 10.1007/s00122-021-03985-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
Exome sequencing-based allele mining for frost tolerance suggests HvCBF14 rather than CNV at Fr-H2 locus is the main responsible of frost tolerance in barley. Wild relatives, landraces and old cultivars of barley represent a reservoir of untapped and potentially important genes for crop improvement, and the recent sequencing technologies provide the opportunity to mine the existing genetic diversity and to identify new genes/alleles for the traits of interest. In the present study, we use frost tolerance and vernalization requirement as case studies to demonstrate the power of allele mining carried out on exome sequencing data generated from > 400 barley accessions. New deletions in the first intron of VRN-H1 were identified and linked to a reduced vernalization requirement, while the allelic diversity of HvCBF2a, HvCBF4b and HvCBF14 was investigated by combining the analysis of SNPs and read counts. This approach has proven very effective to identify gene paralogs and copy number variants of HvCBF2 and the HvCBF4b-HvCBF2a segment. A multiple linear regression model which considers allelic variation at these genes suggests a major involvement of HvCBF14, rather than copy number variation of HvCBF4b-HvCBF2a, in controlling frost tolerance in barley. Overall, the present study provides powerful resource and tools to discover novel alleles at relevant genes in barley.
Collapse
Affiliation(s)
- Davide Guerra
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy.
| | - Caterina Morcia
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Franz Badeck
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Fulvia Rizza
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Stefano Delbono
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Justyna Anna Milc
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Istvan Monostori
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, Martonvásár, 2462, Hungary
| | - Gabor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, Martonvásár, 2462, Hungary
- Department of Environmental Sustainability, Festetics Doctoral School, IES, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, 8360, Hungary
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics - Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017, Fiorenzuola d'Arda , PC, Italy
| |
Collapse
|
3
|
Stockinger EJ. The Breeding of Winter-Hardy Malting Barley. PLANTS 2021; 10:plants10071415. [PMID: 34371618 PMCID: PMC8309344 DOI: 10.3390/plants10071415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
In breeding winter malting barley, one recurring strategy is to cross a current preferred spring malting barley to a winter barley. This is because spring malting barleys have the greatest amalgamation of trait qualities desirable for malting and brewing. Spring barley breeding programs can also cycle their material through numerous generations each year-some managing even six-which greatly accelerates combining desirable alleles to generate new lines. In a winter barley breeding program, a single generation per year is the limit when the field environment is used and about two generations per year if vernalization and greenhouse facilities are used. However, crossing the current favored spring malting barley to a winter barley may have its downsides, as winter-hardiness too may be an amalgamation of desirable alleles assembled together that confers the capacity for prolonged cold temperature conditions. In this review I touch on some general criteria that give a variety the distinction of being a malting barley and some of the general trends made in the breeding of spring malting barleys. But the main objective of this review is to pull together different aspects of what we know about winter-hardiness from the seemingly most essential aspect, which is survival in the field, to molecular genetics and gene regulation, and then finish with ideas that might help further our insight for predictability purposes.
Collapse
Affiliation(s)
- Eric J Stockinger
- Ohio Agricultural Research and Development Center (OARDC), Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|