1
|
Liu W, Tang X, Fu X, Zhang H, Zhu C, Zhang N, Si H. Functional Characterization of Potato UBC13- UEV1s Genes Required for Ubiquitin Lys63 Chain to Polyubiquitination. Int J Mol Sci 2023; 24:ijms24032412. [PMID: 36768743 PMCID: PMC9917286 DOI: 10.3390/ijms24032412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s/UBC) are components of the ubiquitin proteasome system (UPS), and the ubiquitin-conjugating enzyme variant (UEV) is one of E2s (ubiquitin-conjugating enzymes, UBC) subfamily. The UEVs and UBC13 play an auxiliary role in mediating Lys63-linked polyUb chain assembly, which is correlated with target protein non-proteolytic functions, such as DNA repair or response to stress. However, the collaborative mechanism of StUBC13 (homologue of AtUBC13) and StUEVs (the UEVs in potato) involved in potato are not fully understood understood. Here, we identified two StUBC13 and seven StUEVs from potato genome. We analyzed protein motif and conserved domain, gene structure, phylogenetic features, cis-acting elements of StUBC13 and StUEVs. Subsequently, we screened StUBC13 partners protein and verified interaction between StUBC13 and StUEVs using yeast two-hybrid, split luciferase complementation (SLC) and bimolecular fluorescence complementation (BiFC) approach. The expression profile and qRT-PCR analysis suggested that StUBC13 and StUEVs gene exhibited a tissue-specific expression and were induced by different stress. Overall, this investigative study provides a comprehensive reference and view for further functional research on StUBC13 and StUEV1s in potato.
Collapse
Affiliation(s)
- Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Cunlan Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
2
|
Kumasaruge I, Wen R, Wang L, Gao P, Peng G, Xiao W. Systematic characterization of Brassica napus UBC13 genes involved in DNA-damage response and K63-linked polyubiquitination. BMC PLANT BIOLOGY 2023; 23:24. [PMID: 36631796 PMCID: PMC9835285 DOI: 10.1186/s12870-023-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ubc13 is the only known ubiquitin conjugating enzyme (Ubc/E2) dedicated to promoting Lys (K)63-linked polyubiquitination, and this process requires a Ubc/E2 variant (UEV). Unlike conventional K48-linked polyubiquitination that targets proteins for degradation, K63-linked polyubiquitination, which is involved in several cellular processes, does not target proteins for degradation but alter their activities. RESULTS In this study we report the identification and functional characterization of 12 Brassica napus UBC13 genes. All the cloned UBC13 gene products were able to physically interact with AtUev1D, an Arabidopsis UEV, to form stable complexes that are capable of catalyzing K63-linked polyubiquitination in vitro. Furthermore, BnUBC13 genes functionally complemented the yeast ubc13 null mutant defects in spontaneous mutagenesis and DNA-damage responses, suggesting that BnUBC13s can replace yeast UBC13 in mediating K63-linked polyubiquitination and error-free DNA-damage tolerance. CONCLUSION Collectively, this study provides convincing data to support notions that B. napus Ubc13s promote K63-linked polyubiquitination and are probably required for abiotic stress response. Since plant Ubc13-UEV are also implicated in other developmental and stress responses, this systematic study sets a milestone in exploring roles of K63-linked polyubiquitination in this agriculturally important crop.
Collapse
Affiliation(s)
- Ivanthi Kumasaruge
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Lipu Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Peng Gao
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
3
|
Wang L, Yang K, Wang Q, Xiao W. Genetic analysis of DNA-damage tolerance pathways in Arabidopsis. PLANT CELL REPORTS 2023; 42:153-164. [PMID: 36319861 DOI: 10.1007/s00299-022-02942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Genetic analysis revealed a two-branch DNA-damage tolerance mechanism in Arabidopsis, namely translesion DNA synthesis and error-free lesion bypass, represented by Rev3 and Rad5a-Uev1C/D, respectively. DNA-damage tolerance (DDT) is a mechanism by which cells complete replication in the presence of replication-blocking lesions. In budding yeast, DDT is achieved through Rad6-Rad18-mediated monoubiquitination of proliferating cell nuclear antigen (PCNA), which promotes translesion DNA synthesis (TLS) and is followed by Ubc13-Mms2-Rad5 mediated K63-linked PCNA polyubiquitination that promotes error-free lesion bypass. Arabidopsis and other known plant genomes contain all of the above homologous genes except RAD18, and whether plants possess an intact DDT mechanism is unclear. In this study, we created Arabidopsis UEV1 (homologous to yeast MMS2) gene mutations and obtained two sets of double mutant lines Atuev1ab and Atuev1cd. It turned out that the Atuev1cd, but not the Atuev1ab mutant, was sensitive to DNA damage. Genetic analyses revealed that AtUEV1C/D and AtRAD5a function in the same pathway, while TLS represented by AtREV3 functions in a separate pathway in response to replication-blocking lesions. Furthermore, unlike budding yeast RAD5 that also functions in the TLS pathway, AtRAD5a is not required for TLS. Observations in this study collectively establish a two-branch DDT model in plants with similarity to and difference from the yeast DDT.
Collapse
Affiliation(s)
- Linxiao Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qiuheng Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
4
|
Yang K, Xiao W. Functions and mechanisms of the Ubc13-UEV complex and lysine 63-linked polyubiquitination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5372-5387. [PMID: 35640002 DOI: 10.1093/jxb/erac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Zeng C, Xiao W. Molecular cloning and functional characterization of UBC13 and MMS2 from Candida albicans. Gene 2022; 816:146163. [PMID: 34995738 DOI: 10.1016/j.gene.2021.146163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
To maintain genome stability, eukaryotes have evolved a powerful DNA damage response system called DNA-damage tolerance (DDT) to deal with replication-blocking lesions. In the budding yeast Saccharomyces cerevisiae, K63-linked polyubiquitination of proliferating cell nuclear antigen (PCNA) is mediated by a Ubc13-Mms2 heterodimer, leading to error-free DDT. Candida albicans is one of the most studied fungal pathogens and to date no data regarding K63-linked ubiquitination or error-free DDT has been available. Here we report the identification and functional characterization of UBC13 and MMS2 genes from C. albicans. Both genes are highly conserved between S. cerevisiae and C. albicans. However, CaUbc13 differs from all other eukaryotes in that it contains a 21-amino acid tail that appears to attenuate its interaction with CaMms2, suggesting a possible regulatory mechanism in C. albicans. Both CaUBC13 and CaMMS2 genes can functionally rescue the corresponding budding yeast mutants from increased spontaneous mutagenesis and killing by DNA-damaging agents, indicating an error-free DDT pathway in C. albicans. Indeed Caubc13Δ/Δ and Camms2Δ/Δ null mutants were constructed and displayed characteristic sensitivity to DNA-damaging agents.
Collapse
Affiliation(s)
- Chuanwen Zeng
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
6
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
7
|
Uev1A amino terminus stimulates poly-ubiquitin chain assembly and is required for NF-κB activation. Cell Signal 2020; 74:109712. [DOI: 10.1016/j.cellsig.2020.109712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
|
8
|
Guo H, Wang L, Hu R, He Y, Xiao W. Molecular cloning and functional characterization of Physcomitrella patens UBC13-UEV1 genes required for Lys63-linked polyubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110518. [PMID: 32563457 DOI: 10.1016/j.plantsci.2020.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Ubc13 and Ubc/E2 variant (Uev) form a stable heterodimer to mediate Lys63-linked polyubiquitination. Unicellular eukaryotic genomes often contain single UBC13 and UEV gene; however, multiple homologs were found in higher plants. As initial land plants, Physcomitrella patens occupies a key evolutionary position between green algae and higher plants. In this study, we report the identification and functional characterization of two UBC13 and three UEV1 genes from P. patens. Both PpUbc13s form heterodimers with PpUev1B or PpUev1C, which catalyze Lys63-linked polyubiquitination in vitro and functionally complement the yeast ubc13 mms2 null mutant from killing by DNA-damaging agents. In contrast, PpUev1A is unable to interact with Ubc13s and cannot complement the yeast mms2 mutant. Two single mutations, PpUev1A-D12N and ΔCT, barely have any effect; however, the corresponding double mutation makes PpUev1A functional in both heterodimer formation and complementation. This study identifies a critical Uev residue located in the Ubc13-Uev interface and reveals that mosses began to evolve multiple UBC13 and UEV orthologs in order to adapt to the terrestrial environment. The evolutionary significance of PpUEV1A is discussed.
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Linxiao Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
9
|
Bai Z, Wei M, Li Z, Xiao W. Drosophila Uev1a is dually required for Ben-dependent DNA-damage response and fly mobility. Cell Signal 2020; 74:109719. [PMID: 32702441 DOI: 10.1016/j.cellsig.2020.109719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022]
Abstract
K63-linked polyubiquitination requires the ubiquitin-conjugating enzyme Ubc13 and a Ubc/E2 variant Uev. Lower eukaryotic organisms contain one UEV gene required for DNA-damage tolerance, while vertebrates and higher plants contain multiple UEV genes with distinct functions. In contrast, Drosophila contains only one UEV gene designated dUev1a. Here we report that dUev1a forms a stable heterodimer with Ben, the Drosophila Ubc13 ortholog, that dUev1a-F15E completely abolishes the interaction, and that a conserved dUev1a-F15Y substitution severely reduces its interaction with Ben. dUev1a functionally rescues the corresponding yeast mms2 null mutant from killing by various DNA-damaging agents in a Ben-dependent manner, and the heterozygous dUev1a mutant flies are more sensitive to DNA-damaging agent, indicating that the function of UEV in DNA-damage response is conserved throughout eukaryotes. Meanwhile, dUev1a+/- mutant flies displayed reduced mobility characteristic of defects in the central nervous system and reminiscent of the bendless phenotypes, suggesting that dUev1a acts together with Ben in this process. Our observations collectively imply that dUev1a is dually required for DNA-damage response and neurological signaling in Drosophila, and that these processes are mediated by the Ben-dUev1a complex that promotes K63-linked polyubiquitination.
Collapse
Affiliation(s)
- Zhiqiang Bai
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Min Wei
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|