1
|
Couto EGO, Morales-Marroquín JA, Alves-Pereira A, Fernandes SB, Colombo CA, de Azevedo-Filho JA, Carvalho CRL, Zucchi MI. Genome-wide association insights into the genomic regions controlling vegetative and oil production traits in Acrocomia aculeata. BMC PLANT BIOLOGY 2024; 24:1125. [PMID: 39587483 PMCID: PMC11590364 DOI: 10.1186/s12870-024-05805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Macauba (Acrocomia aculeata) is a non-domesticated neotropical palm that has been attracting attention for economic use due to its great potential for oil production comparable to the commercially used oil palm (Elaeis guineensis). The discovery of associations between quantitative trait loci and economically important traits represents an advance toward understanding its genetic architecture and can contribute to accelerating macauba domestication. Pursuing this advance, this study performs single-trait and multi-trait GWAS models to identify candidate genes associated with vegetative and oil production traits in macauba. Eighteen phenotypic traits were evaluated from 201 palms within a native population. Genotyping was performed with SNP markers, following the protocol of genotyping-by-sequencing. Given that macauba lacks a reference genome, SNP calling was performed using three different strategies: using i) de novo sequencing, ii) the Elaeis guineenses Jacq. reference genome and iii) the macauba transcriptome sequences. After quality control, we identified a total of 27,410 SNPs in 153 individuals for the de novo genotypic dataset, 10,444 SNPs in 158 individuals using the oil palm genotypic dataset, and 4,329 SNPs in 167 individuals using the transcriptome genotypic dataset. The GWAS analysis was then performed on these three genotypic datasets. RESULTS Statistical phenotypic analyses revealed significant differences across all studied traits, with heritability values ranging from 63 to 95%. This indicates that the population contains promising genotypes for selection and the initiation of breeding programs. Genetic correlations between the 18 traits ranged from -0.47 to 0.99. The total number of significant SNPs in the single-trait and multi-trait GWAS was 92 and 6 using the de novo genotypic dataset, 19 and 11 using the oil palm genotypic dataset, and 1 and 2 using the transcriptome genotypic dataset, respectively. Gene annotation identified 12 candidate genes in the single-trait GWAS and four in the multi-trait GWAS, across the 18 phenotypic traits studied, in the three genotypic datasets. Gene mapping of the macauba candidate genes revealed similarities with Elaeis guineensis and Phoenix dactylifera. The candidate genes detected are responsible for metal ion binding and transport, protein transportation, DNA repair, and other cell regulation biological processes. CONCLUSIONS We provide new insights into genomic regions that map candidate genes associated with vegetative and oil production traits in macauba. These potential candidate genes require confirmation through targeted functional analyses in the future, and multi-trait associations need to be scrutinized to investigate the presence of pleiotropic or linked genes. Markers linked to traits of interest could serve as valuable resources for the development of marker-assisted selection in macauba for its domestication and pre-breeding.
Collapse
Affiliation(s)
- Evellyn G O Couto
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, São Paulo University, (ESALQ/USP), Piracicaba, Brazil.
| | - Jonathan A Morales-Marroquín
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, São Paulo University, (ESALQ/USP), Piracicaba, Brazil
| | | | - Samuel B Fernandes
- Department of Crop Soil, and Enviromental Sciences, Center of Agrcultural Data Analytics, University of Arkansas, Fayetteville, USA
| | - Carlos Augusto Colombo
- Research Center of Plant Genetic Resources, Campinas Agronomic Institute, Campinas, Brazil
| | | | | | - Maria Imaculada Zucchi
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, São Paulo University, (ESALQ/USP), Piracicaba, Brazil.
- Polo Centro Sul, São Paulo Agency for Agribusiness Technology (APTA), Piracicaba, Brazil.
| |
Collapse
|
2
|
Xu W, John Martin JJ, Li X, Liu X, Zhang R, Hou M, Cao H, Cheng S. Unveiling the Secrets of Oil Palm Genetics: A Look into Omics Research. Int J Mol Sci 2024; 25:8625. [PMID: 39201312 PMCID: PMC11354864 DOI: 10.3390/ijms25168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Oil palm is a versatile oil crop with numerous applications. Significant progress has been made in applying histological techniques in oil palm research in recent years. Whole genome sequencing of oil palm has been carried out to explain the function and structure of the order genome, facilitating the development of molecular markers and the construction of genetic maps, which are crucial for studying important traits and genetic resources in oil palm. Transcriptomics provides a powerful tool for studying various aspects of plant biology, including abiotic and biotic stresses, fatty acid composition and accumulation, and sexual reproduction, while proteomics and metabolomics provide opportunities to study lipid synthesis and stress responses, regulate fatty acid composition based on different gene and metabolite levels, elucidate the physiological mechanisms in response to abiotic stresses, and explain intriguing biological processes in oil palm. This paper summarizes the current status of oil palm research from a multi-omics perspective and hopes to provide a reference for further in-depth research on oil palm.
Collapse
Affiliation(s)
- Wen Xu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Ruimin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Mingming Hou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Shuanghong Cheng
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| |
Collapse
|
3
|
Li W, Luo P, Shi Y, Zhang H, Yan Q, Ye Y, Yao Y, He J. Genome-wide association study of the loci and candidate genes associated with agronomic traits in Amomum villosum Lour. PLoS One 2024; 19:e0306806. [PMID: 39102408 PMCID: PMC11299815 DOI: 10.1371/journal.pone.0306806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Amomum villosum Lour. (A. villosum) is a valuable herbaceous plant that produces the famous traditional Chinese medicine Amori Fructus. Identifying molecular markers associated with the growth of A. villosum can facilitate molecular marker-assisted breeding of the plant. This study employed 75 A. villosum accessions as the test material and utilized 71 pairs of polymorphic simple sequence repeat (SSR) molecular markers to genotype the population. The study analyzed the association between SSR markers and phenotypic traits through the linkage imbalance and population structure analysis. Candidate genes associated with the molecular markers were also identified. The results showed that the phenotypic diversity index range of the 12 agronomic traits was 4.081-4.312 and conformed to a normal distribution. Moreover, 293 allelic variations were detected in the 75 accessions, with an average of 5.32 amplified alleles per loci, ranging from 3 to 8. The maximum number of amplified alleles for AVL12 was 8. The population structure and cluster analysis indicated that the accessions could be divided into two subgroups. Using the mixed linear model (MLM) model of population structure (Q)+kinship matrix (K) for association analysis, three SSR molecular markers significantly associated with the agronomic traits were detected. Fluorescence quantification was used to analyze the expression levels of six candidate genes, and it was found that three of the genes were differentially expressed in phenotypically different accessions. This study is the first to use SSR markers for genome-wide association study (GWAS) mapping and identification of the associated agronomic traits in A. villosum. The results of this study provide a basis for identifying genetic markers for growth traits for marker-assisted breeding in A. villosum.
Collapse
Affiliation(s)
- Wenxiu Li
- Chinese Academy of Tropical Agricultural Sciences/Zhanjiang Rubber Forest Economic Engineering Technology Research Center, Zhanjiang Experimental Station, Zhanjiang, Guangdong, China
| | - Ping Luo
- Chinese Academy of Tropical Agricultural Sciences/Zhanjiang Rubber Forest Economic Engineering Technology Research Center, Zhanjiang Experimental Station, Zhanjiang, Guangdong, China
| | - Yunfeng Shi
- Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hualin Zhang
- Chinese Academy of Tropical Agricultural Sciences/Zhanjiang Rubber Forest Economic Engineering Technology Research Center, Zhanjiang Experimental Station, Zhanjiang, Guangdong, China
| | - Qing Yan
- Chinese Academy of Tropical Agricultural Sciences/Zhanjiang Rubber Forest Economic Engineering Technology Research Center, Zhanjiang Experimental Station, Zhanjiang, Guangdong, China
| | - Yana Ye
- Chinese Academy of Tropical Agricultural Sciences/Zhanjiang Rubber Forest Economic Engineering Technology Research Center, Zhanjiang Experimental Station, Zhanjiang, Guangdong, China
| | - Yanli Yao
- Chinese Academy of Tropical Agricultural Science/Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crop Research Institute, Zhanjiang, Guangdong, China
| | - Junjun He
- Chinese Academy of Tropical Agricultural Science/Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crop Research Institute, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Ashwath MN, Lavale SA, Santhoshkumar AV, Mohapatra SR, Bhardwaj A, Dash U, Shiran K, Samantara K, Wani SH. Genome-wide association studies: an intuitive solution for SNP identification and gene mapping in trees. Funct Integr Genomics 2023; 23:297. [PMID: 37700096 DOI: 10.1007/s10142-023-01224-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Analysis of natural diversity in wild/cultivated plants can be used to understand the genetic basis for plant breeding programs. Recent advancements in DNA sequencing have expanded the possibilities for genetically altering essential features. There have been several recently disclosed statistical genetic methods for discovering the genes impacting target qualities. One of these useful methods is the genome-wide association study (GWAS), which effectively identifies candidate genes for a variety of plant properties by examining the relationship between a molecular marker (such as SNP) and a target trait. Conventional QTL mapping with highly structured populations has major limitations. The limited number of recombination events results in poor resolution for quantitative traits. Only two alleles at any given locus can be studied simultaneously. Conventional mapping approach fails to work in perennial plants and vegetatively propagated crops. These limitations are sidestepped by association mapping or GWAS. The flexibility of GWAS comes from the fact that the individuals being examined need not be linked to one another, allowing for the use of all meiotic and recombination events to increase resolution. Phenotyping, genotyping, population structure analysis, kinship analysis, and marker-trait association analysis are the fundamental phases of GWAS. With the rapid development of sequencing technologies and computational methods, GWAS is becoming a potent tool for identifying the natural variations that underlie complex characteristics in crops. The use of high-throughput sequencing technologies along with genotyping approaches like genotyping-by-sequencing (GBS) and restriction site associated DNA (RAD) sequencing may be highly useful in fast-forward mapping approach like GWAS. Breeders may use GWAS to quickly unravel the genomes through QTL and association mapping by taking advantage of natural variances. The drawbacks of conventional linkage mapping can be successfully overcome with the use of high-resolution mapping and the inclusion of multiple alleles in GWAS.
Collapse
Affiliation(s)
- M N Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Shivaji Ajinath Lavale
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - A V Santhoshkumar
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751 003, India.
| | - Ankita Bhardwaj
- Department of Silviculture and Agroforestry, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Umakanta Dash
- Department of Silviculture and Agroforestry, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - K Shiran
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Shabir Hussain Wani
- Mountain Research Center for Field crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
5
|
Garzón-Martínez GA, Osorio-Guarín JA, Moreno LP, Bastidas S, Barrero LS, Lopez-Cruz M, Enciso-Rodríguez FE. Genomic selection for morphological and yield-related traits using genome-wide SNPs in oil palm. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:71. [PMID: 37313322 PMCID: PMC10248711 DOI: 10.1007/s11032-022-01341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/29/2022] [Indexed: 06/15/2023]
Abstract
Oil palm is the most important oil crop worldwide. Colombia is the fourth largest producer, primarily relying on production from interspecific hybrids, derived from crosses between Elaeis oleifera and Elaeis guineensis (OxG). However, conventional breeding can take up to 20 years to generate a new variety. Therefore, reducing the breeding cycle while improving the genetic gain for complex traits is desirable. Genomic selection (GS) is an approach with the potential to achieve this goal. In this study, we evaluated 431 F1 interspecific hybrids (OxG) and 444 backcrosses (BC1) for morphological and yield-related traits. Genomic predictions were performed with the G-BLUP model using three different population datasets for training the model: the same population (TRN1), the other population (TRN2), and both populations (TRN1+2). Higher multi-family prediction accuracies were obtained for foliar area (0.3 in OxG) and trunk height (0.47 in BC1) when the model was trained with TRN1. Single-family prediction accuracies were lower in the OxG compared to BC1 families for traits such as trunk diameter, trunk height, bunch number, and yield using TRN1. Conversely, lower prediction accuracies were obtained for most traits when the model was trained using TRN2 (< 0.1). Multi-trait models showed a substantial increase of the predictions for traits such as yield (0.22 for OxG and 0.44 for BC1), because of the genetic correlations between traits. The results herein highlighted the potential of GS for parental selection in OxG and BC1 populations, but further studies are required to improve the models to select individuals by their genetic value. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01341-5.
Collapse
Affiliation(s)
- Gina A. Garzón-Martínez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Cundinamarca Colombia
| | - Jaime A. Osorio-Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Cundinamarca Colombia
| | - Leidy P. Moreno
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Palmira, Valle del Cauca Colombia
| | - Silvio Bastidas
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Palmira, Valle del Cauca Colombia
| | - Luz Stella Barrero
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Cundinamarca Colombia
| | - Marco Lopez-Cruz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI USA
| | - Felix E. Enciso-Rodríguez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Cundinamarca Colombia
- Blueberry Breeding Program, Department of Horticulture Sciences, University of Florida, 2211 Fifield Hall, 2550 Hull Rd, Gainesville, FL 32611 USA
| |
Collapse
|
6
|
Liu H, Zou M, Zhang B, Yang X, Yuan P, Ding G, Xu F, Shi L. Genome-wide association study identifies candidate genes and favorable haplotypes for seed yield in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:61. [PMID: 37313016 PMCID: PMC10248642 DOI: 10.1007/s11032-022-01332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Oilseed rape (Brassica napus L.) is one of the most essential oil crops. Genetic improvement of seed yield (SY) is a major aim of B. napus breeding. Several studies have been reported on the genetic mechanisms of SY of B. napus. Here, a genome-wide association study (GWAS) of SY was conducted using a panel of 403 natural accessions of B. napus, with more than five million high-quality single-nucleotide polymorphisms (SNPs). A total of 1773 significant SNPs were detected associated with SY, and 783 significant SNPs were co-located with previously reported QTLs. The lead SNPs chrA01__8920351 and chrA02__4555979 were jointly detected in Trial 2_2 and Trial 2_mean value, and in Trial 1_2 and Trial 1_mean value, respectively. Subsequently, two candidate genes of BnaA01g17200D and BnaA02g08680D were identified through combining transcriptome, candidate gene association analysis, and haplotype analysis. BnaA09g10430D detected through lead SNP chrA09__5160639 was associated with SY of B. napus. Our results provide valuable information for studying the genetic control of seed yield in B. napus and valuable genes, haplotypes, and cultivars resources for the breeding of high seed yield B. napus cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01332-6.
Collapse
Affiliation(s)
- Haijiang Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Maoyan Zou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Bingbing Zhang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Xinyu Yang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Pan Yuan
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Guangda Ding
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Fangsen Xu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Lei Shi
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| |
Collapse
|
7
|
SSR-Sequencing Reveals the Inter- and Intraspecific Genetic Variation and Phylogenetic Relationships among an Extensive Collection of Radish ( Raphanus) Germplasm Resources. BIOLOGY 2021; 10:biology10121250. [PMID: 34943165 PMCID: PMC8698774 DOI: 10.3390/biology10121250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Raphanus is an important genus of Brassicaceae and has undergone a lengthy evolutionary process. However, the inter- and intraspecific phylogenetic relationships and genetic diversity are not well understood. To elucidate these issues, we SSR-sequenced 939 wild, semi-wild and cultivated accessions, and discovered that Europe was the origin center of radishes with diverse European wild radishes, and Europe, South Asia and East Asia might be three independent domestication centers. There was considerable genetic differentiation within European cultivated radishes. European primitive cultivated radish exhibited gene flow with black radish/oil radish and rat-tail radish. Among Asian cultivated radishes, rat-tail radish was a sister to the clade of Chines big radish (including Japanese wild radish), suggesting that they may share the most recent common ancestry. Japanese wild radish had strong gene exchange with Japanese/Korea big radish, oil radish and rat-tail radish. American wild radish developed from natural hybridization between European wild radish and European small radish. All these demonstrated that European primitive cultivated type, American wild radish and Japanese wild radish might have played indispensable roles in radish evolution. Our study provides new perspectives into the origin, evolution and genetic diversity of Raphanus and facilitates the conservation and exploitation of radish germplasm resources. Abstract Raphanus has undergone a lengthy evolutionary process and has rich diversity. However, the inter- and intraspecific phylogenetic relationships and genetic diversity of this genus are not well understood. Through SSR-sequencing and multi-analysis of 939 wild, semi-wild and cultivated accessions, we discovered that the European wild radish (EWR) population is separated from cultivated radishes and has a higher genetic diversity. Frequent intraspecific genetic exchanges occurred in the whole cultivated radish (WCR) population; there was considerable genetic differentiation within the European cultivated radish (ECR) population, which could drive radish diversity formation. Among the ECR subpopulations, European primitive cultivated radishes (EPCRs) with higher genetic diversity are most closely related to the EWR population and exhibit a gene flow with rat-tail radishes (RTRs) and black radishes (BRs)/oil radishes (ORs). Among Asian cultivated radishes (ACRs), Chinese big radishes (CBRs) with a relatively high diversity are furthest from the EWR population, and most Japanese/Korean big radishes (JKBRs) are close to CBR accessions, except for a few old Japanese landraces that are closer to the EPCR. The CBR and JKBR accessions are independent of RTR accessions; however, phylogenetic analysis indicates that the RTR is sister to the clade of CBR (including JWR), which suggests that the RTR may share the most recent common ancestry with CBRs and JWRs. In addition, Japanese wild radishes (JWRs), (namely, R. sativus forma raphanistroides) are mainly scattered between CBRs and EPCRs in PCoA analysis. Moreover, JWRs have a strong gene exchange with the JKBR, OR and RTR subpopulations. American wild radishes (AWRs) are closely related to European wild and cultivated radishes, and have a gene flow with European small radishes (ESRs), suggesting that the AWR developed from natural hybridization between the EWR and the ESR. Overall, this demonstrates that Europe was the origin center of the radish, and that Europe, South Asia and East Asia appear to have been three independent domestication centers. The EPCR, AWR and JWR, as semi-wild populations, might have played indispensable transitional roles in radish evolution. Our study provides new perspectives into the origin, evolution and genetic diversity of Raphanus and facilitates the conservation and exploitation of radish germplasm resources.
Collapse
|