1
|
Zhang K, Zentella R, Burkey KO, Liao HL, Tisdale RH. Long-term tropospheric ozone pollution disrupts plant-microbe-soil interactions in the agroecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17215. [PMID: 38429894 DOI: 10.1111/gcb.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Tropospheric ozone (O3 ) threatens agroecosystems, yet its long-term effects on intricate plant-microbe-soil interactions remain overlooked. This study employed two soybean genotypes of contrasting O3 -sensitivity grown in field plots exposed elevated O3 (eO3 ) and evaluated cause-effect relationships with their associated soil microbiomes and soil quality. Results revealed long-term eO3 effects on belowground soil microbiomes and soil health surpass damage visible on plants. Elevated O3 significantly disrupted belowground bacteria-fungi interactions, reduced fungal diversity, and altered fungal community assembly by impacting soybean physiological properties. Particularly, eO3 impacts on plant performance were significantly associated with arbuscular mycorrhizal fungi, undermining their contribution to plants, whereas eO3 increased fungal saprotroph proliferation, accelerating soil organic matter decomposition and soil carbon pool depletion. Free-living diazotrophs exhibited remarkable acclimation under eO3 , improving plant performance by enhancing nitrogen fixation. However, overarching detrimental consequences of eO3 negated this benefit. Overall, this study demonstrated long-term eO3 profoundly governed negative impacts on plant-soil-microbiota interactions, pointing to a potential crisis for agroecosystems. These findings highlight urgent needs to develop adaptive strategies to navigate future eO3 scenarios.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Rodolfo Zentella
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kent O Burkey
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Ripley H Tisdale
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Shahzadi E, Nawaz M, Iqbal N, Ali B, Adnan M, Saleem MH, Okla MK, Abbas ZK, Al-Qahtani SM, Al-Harbi NA, Marc RA. Silicic and Ascorbic Acid Induced Modulations in Photosynthetic, Mineral Uptake, and Yield Attributes of Mung Bean ( Vigna radiata L. Wilczek) under Ozone Stress. ACS OMEGA 2023; 8:13971-13981. [PMID: 37091383 PMCID: PMC10116534 DOI: 10.1021/acsomega.3c00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Most of the world's crop production and plant growth are anticipated to be seriously threatened by the increasing tropospheric ozone (O3) levels. The current study demonstrates how different mung bean genotypes reacted to the elevated level of O3 in the presence of exogenous ascorbic and silicic acid treatments. It is the first report to outline the potential protective effects of ascorbic and silicic acid applications against O3 toxicity in 12 mung bean {Vigna radiata (L.) Wilken} varieties. Under controlled circumstances, the present investigation was conducted in a glass house. There were four different treatments used: control (ambient O3 concentration of 40-45 ppb), elevated O3 (120 ppb), elevated O3 with silicic acid (0.1 mM), and elevated O3 with ascorbic acid (10 mM). Three varieties, viz. NM 20-21, NM 2006, and NM 2016, showcased tolerance to O3 toxicity. Our findings showed that ascorbic and silicic acid applications gradually increased yield characteristics such as seed yield, harvest index, days to maturity, and characteristics related to gas exchange such as transpiration rate, stomatal conductance, net photosynthetic activity, and water-use efficiency. Compared to the control, applying both growth regulators enhanced the mineral uptake across all treatments. Based on the findings of the current study, it is concluded that the subject mung bean genotypes responded to silicic acid treatment more efficiently than ascorbic acid to mitigate the harmful effects of O3 stress.
Collapse
Affiliation(s)
- Eram Shahzadi
- Department
of Botany, Government College University
Faisalabad, Faisalabad 38000, Punjab, Pakistan
| | - Muhammad Nawaz
- Department
of Botany, Government College University
Faisalabad, Faisalabad 38000, Punjab, Pakistan
| | - Naeem Iqbal
- Department
of Botany, Government College University
Faisalabad, Faisalabad 38000, Punjab, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Adnan
- School
of Environment and Natural Resources, The
Ohio State University, Columbus, Ohio 43210-1132, United States
| | - Muhammad Hamzah Saleem
- Office
of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Mohammad K. Okla
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zahid Khorshid Abbas
- Biology
Department,
College of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology
Department, University College of Taymma, University of Tabuk, P.O. Box 741, Tabuk 71421, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology
Department, University College of Taymma, University of Tabuk, P.O. Box 741, Tabuk 71421, Saudi Arabia
| | - Romina Alina Marc
- Food
Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary
Medicine of Cluj-Napoca, 3-5 Calea Mănă̧stur Street, Cluj-Napoca 400372, Romania
| |
Collapse
|
3
|
Zhang K, Zentella R, Burkey KO, Liao HL, Tisdale RH. Microbial community dynamics responding to nutrient allocation associated with soybean cultivar 'Jake' ozone adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161008. [PMID: 36549524 DOI: 10.1016/j.scitotenv.2022.161008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Tropospheric ozone (O3), a major air pollutant, leads to significant global yield loss in soybean [Glycine max (L.) Merr.]. Soybean cultivar 'Jake' shows O3 resilient traits in above-ground organs, but the root system remains sensitive to elevated O3 (eO3). Changing carbon (C) and nitrogen (N) resource composition during eO3 stress suggests that eO3 presumably alters belowground soil microbial communities and their driven nutrient transformation. Yet, the responses of belowground microbes to eO3 and their feedback on nutrient cycling in 'Jake' are unknown. In this study, we holistically investigated soil microbial communities associated with C and N dynamics and bacterial-fungal inter-kingdom networks in the rhizosphere and bulk soil at different developmental stages of 'Jake' grown under sub-ambient O3 [charcoal-filtered (CF) air, 12 h mean: 20 ppb] or eO3 (12 h mean: 87 ppb). The results demonstrated eO3 significantly decreased fungal diversity and complexity of microbial networks at different 'Jake' developmental stages, whereas bacterial diversity was more tolerant to eO3 in both bulk soil and rhizosphere. In the bulk soil, no O3-responsive microbial biomarkers were found to be associated with C and N content, implying eO3 may stimulate niche-based processes during 'Jake' growth. In contrast, this study identified O3-responsive microbial biomarkers that may contribute to the N acquisition (Chloroflexales) and C dynamics (Caldilineales, Thermomicrobiales, and Hypocreales) in the rhizosphere, which may support the O3 resilience of the 'Jake' cultivar. However, further investigation is required to confirm their specific contributions by determining changes in microbial gene expression. Overall, these findings conduce to an expanding knowledge base that O3 induces temporal and spatial changes in the effects of microbial and nutrient networks in the O3-tolerant agriculture ecosystems.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rodolfo Zentella
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607, NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695, NC, USA
| | - Kent O Burkey
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607, NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695, NC, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Ripley H Tisdale
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, 27607, NC, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695, NC, USA.
| |
Collapse
|
4
|
Gu X, Wang T, Li C. Elevated ozone decreases the multifunctionality of belowground ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:890-908. [PMID: 36300607 DOI: 10.1111/gcb.16507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Elevated tropospheric ozone (O3 ) affects the allocation of biomass aboveground and belowground and influences terrestrial ecosystem functions. However, how belowground functions respond to elevated O3 concentrations ([O3 ]) remains unclear at the global scale. Here, we conducted a detailed synthesis of belowground functioning responses to elevated [O3 ] by performing a meta-analysis of 2395 paired observations from 222 publications. We found that elevated [O3 ] significantly reduced the primary productivity of roots by 19.8%, 16.3%, and 26.9% for crops, trees and grasses, respectively. Elevated [O3 ] strongly decreased the root/shoot ratio by 11.3% for crops and by 4.9% for trees, which indicated that roots were highly sensitive to O3 . Elevated [O3 ] impacted carbon and nitrogen cycling in croplands, as evidenced by decreased dissolved organic carbon, microbial biomass carbon, total soil nitrogen, ammonium nitrogen, microbial biomass nitrogen, and nitrification rates in association with increased nitrate nitrogen and denitrification rates. Elevated [O3 ] significantly decreased fungal phospholipid fatty acids in croplands, which suggested that O3 altered the microbial community and composition. The responses of belowground functions to elevated [O3 ] were modified by experimental methods, root environments, and additional global change factors. Therefore, these factors should be considered to avoid the underestimation or overestimation of the impacts of elevated [O3 ] on belowground functioning. The significant negative relationships between O3 -treated intensity and the multifunctionality index for croplands, forests, and grasslands implied that elevated [O3 ] decreases belowground ecosystem multifunctionality.
Collapse
Affiliation(s)
- Xian Gu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Hall RM, Urban B, Skalova H, Moravcová L, Sölter U, Starfinger U, Kazinczi G, van Valkenburg J, Fenesi A, Konstantinovic B, Uludag A, Lommen S, Karrer G. Seed viability of common ragweed (Ambrosia artemisiifolia L.) is affected by seed origin and age, but also by testing method and laboratory. NEOBIOTA 2021. [DOI: 10.3897/neobiota.70.66915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Common ragweed (Ambrosia artemisiifolia L.) is an annual Asteraceae species native to North America which is highly invasive across Europe and has harmful impacts, especially on human health and agriculture. Besides its wide ecological range, particularly its high reproductive power by seeds is promoting its spread to various habitats and regions. To prevent further spread and to control the plant, the European Commission funded projects and COST-Actions involving scientists from all over Europe. A joint trial was set up comprising eight different laboratories from Europe to study seed viability variation in different seed samples. Three different testing methods (viability test with 2,3,5-triphenyltetrazolium chloride (TTC), a germination test combined with a subsequent TTC test and a crush test) were tested within the EU-COST-Action SMARTER network to four different seed origins. The viability test results from different laboratories were compared for variation amongst tests and laboratories. The main aim was to optimise the reliability of testing procedures, but results revealed not only significant effects of seed origin and seed age on seed viability, but also considerable differences between the output of the individual testing methods and furthermore between laboratories.
Due to these significant differences in the results of the testing labs, additionally a second test was set up. Twelve Austrian ragweed populations were used for TTC testing to obtain a precise adjustment of the testing method as well as a tight guideline for interpreting the results, particularly for the TTC state “intermediate” since a proper classification of TTC-intermediate coloured seeds is still a challenge when determining viability rates.
Collapse
|