1
|
Yang QY, Wang XQ, Yang YJ, Huang W. Fluctuating light induces a significant photoinhibition of photosystem I in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108426. [PMID: 38340689 DOI: 10.1016/j.plaphy.2024.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In nature, light intensity usually fluctuates and a sudden shade-sun transition can induce photodamage to photosystem I (PSI) in many angiosperms. Photosynthetic regulation in fluctuating light (FL) has been studied extensively in C3 plants; however, little is known about how C4 plants cope FL to prevent PSI photoinhibition. We here compared photosynthetic responses to FL between maize (Zea mays, C4) and tomato (Solanum lycopersicum, C3) grown under full sunlight. Maize leaves had significantly higher cyclic electron flow (CEF) activity and lower photorespiration activity than tomato. Upon a sudden shade-sun transition, maize showed a significant stronger transient PSI over-reduction than tomato, resulting in a significant greater PSI photoinhibition in maize after FL treatment. During the first seconds upon shade-sun transition, CEF was stimulated in maize at a much higher extent than tomato, favoring the rapid formation of trans-thylakoid proton gradient (ΔpH), which was helped by a transient down-regulation of chloroplast ATP synthase activity. Therefore, modulation of ΔpH by regulation of CEF and chloroplast ATP synthase adjusted PSI redox state at donor side, which partially compensated for the deficiency of photorespiration. We propose that C4 plants use different photosynthetic strategies for coping with FL as compared with C3 plants.
Collapse
Affiliation(s)
- Qiu-Yan Yang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Qian Wang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China
| | - Ying-Jie Yang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
2
|
Photoinhibition of Photosystem I Induced by Different Intensities of Fluctuating Light Is Determined by the Kinetics of ∆pH Formation Rather Than Linear Electron Flow. Antioxidants (Basel) 2022; 11:antiox11122325. [PMID: 36552532 PMCID: PMC9774317 DOI: 10.3390/antiox11122325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Fluctuating light (FL) can cause the selective photoinhibition of photosystem I (PSI) in angiosperms. In nature, leaves usually experience FL conditions with the same low light and different high light intensities, but the effects of different FL conditions on PSI redox state and PSI photoinhibition are not well known. In this study, we found that PSI was highly reduced within the first 10 s after transition from 59 to 1809 μmol photons m-2 s-1 in tomato (Solanum lycopersicum). However, such transient PSI over-reduction was not observed by transitioning from 59 to 501 or 923 μmol photons m-2 s-1. Consequently, FL (59-1809) induced a significantly stronger PSI photoinhibition than FL (59-501) and FL (59-923). Compared with the proton gradient (∆pH) level after transition to high light for 60 s, tomato leaves almost formed a sufficient ∆pH after light transition for 10 s in FL (59-501) but did not in FL (59-923) or FL (59-1809). The difference in ∆pH between 10 s and 60 s was tightly correlated to the extent of PSI over-reduction and PSI photoinhibition induced by FL. Furthermore, the difference in PSI photoinhibition between (59-923) and FL (59-1809) was accompanied by the same level of linear electron flow. Therefore, PSI photoinhibition induced by different intensities of FL is more related to the kinetics of ∆pH formation rather than linear electron flow.
Collapse
|
3
|
Cheng JB, Zhang SB, Wu JS, Huang W. The Dynamic Changes of Alternative Electron Flows upon Transition from Low to High Light in the Fern Cyrtomium fortune and the Gymnosperm Nageia nagi. Cells 2022; 11:cells11172768. [PMID: 36078176 PMCID: PMC9455243 DOI: 10.3390/cells11172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
In photosynthetic organisms except angiosperms, an alternative electron sink that is mediated by flavodiiron proteins (FLVs) plays the major role in preventing PSI photoinhibition while cyclic electron flow (CEF) is also essential for normal growth under fluctuating light. However, the dynamic changes of FLVs and CEF has not yet been well clarified. In this study, we measured the P700 signal, chlorophyll fluorescence, and electrochromic shift spectra in the fern Cyrtomium fortune and the gymnosperm Nageia nagi. We found that both species could not build up a sufficient proton gradient (∆pH) within the first 30 s after light abruptly increased. During this period, FLVs-dependent alternative electron flow was functional to avoid PSI over-reduction. This functional time of FLVs was much longer than previously thought. By comparison, CEF was highly activated within the first 10 s after transition from low to high light, which favored energy balancing rather than the regulation of a PSI redox state. When FLVs were inactivated during steady-state photosynthesis, CEF was re-activated to favor photoprotection and to sustain photosynthesis. These results provide new insight into how FLVs and CEF interact to regulate photosynthesis in non-angiosperms.
Collapse
Affiliation(s)
- Jun-Bin Cheng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jin-Song Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence:
| |
Collapse
|
4
|
Wang H, Wang XQ, Zeng ZL, Yu H, Huang W. Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111207. [PMID: 35193751 DOI: 10.1016/j.plantsci.2022.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic induction after a sudden increase in illumination affects carbon gain. Photosynthetic dynamics under fluctuating light (FL) have been widely investigated in C3 and C4 plants but are little known in CAM plants. In our present study, the chlorophyll fluorescence, P700 redox state and electrochromic shift signals were measured to examine photosynthetic characteristics under FL in the CAM orchid Vanilla planifolia. The light use efficiency was maximized in the morning but was restricted in the afternoon, indicating that the pool of malic acid dried down in the afternoon. During photosynthetic induction in the morning, electron flow through photosystem I rapidly reached the 95% of the maximum value in 4-6 min, indicating that V. planifolia showed a fast photosynthetic induction when compared with C3 and C4 plants reported previously. Upon a sudden transition from dark to actinic light, a rapid re-oxidation of P700 was observed in V. planifolia, indicating the fast outflow of electrons from PSI to alternative electron acceptors, which was attributed to the O2 photo-reduction mediated by water-water cycle. The functioning of water-water cycle prevented photosystem I over-reduction after transitioning from low to high light and thus protected PSI under FL. In the afternoon, cyclic electron flow was stimulated under FL to fine-tune photosynthetic apparatus when photosynthetic CO2 was restricted. Therefore, water-water cycle cooperates with cyclic electron flow to regulate the photosynthesis under FL in the CAM orchid V. planifolia.
Collapse
Affiliation(s)
- Hui Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
5
|
Yang YJ, Shi Q, Sun H, Mei RQ, Huang W. Differential Response of the Photosynthetic Machinery to Fluctuating Light in Mature and Young Leaves of Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 12:829783. [PMID: 35185969 PMCID: PMC8850366 DOI: 10.3389/fpls.2021.829783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A key component of photosynthetic electron transport chain, photosystem I (PSI), is susceptible to the fluctuating light (FL) in angiosperms. Cyclic electron flow (CEF) around PSI and water-water cycle (WWC) are both used by the epiphytic orchid Dendrobium officinale to protect PSI under FL. This study examined whether the ontogenetic stage of leaf has an impact on the photoprotective mechanisms dealing with FL. Thus, chlorophyll fluorescence and P700 signals under FL were measured in D. officinale young and mature leaves. Upon transition from dark to actinic light, a rapid re-oxidation of P700 was observed in mature leaves but disappeared in young leaves, indicating that WWC existed in mature leaves but was lacking in young leaves. After shifting from low to high light, PSI over-reduction was clearly missing in mature leaves. By comparison, young leaves showed a transient PSI over-reduction within the first 30 s, which was accompanied with highly activation of CEF. Therefore, the effect of FL on PSI redox state depends on the leaf ontogenetic stage. In mature leaves, WWC is employed to avoid PSI over-reduction. In young leaves, CEF around PSI is enhanced to compensate for the lack of WWC and thus to prevent an uncontrolled PSI over-reduction induced by FL.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Qiang Mei
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Zeng ZL, Sun H, Wang XQ, Zhang SB, Huang W. Regulation of Leaf Angle Protects Photosystem I under Fluctuating Light in Tobacco Young Leaves. Cells 2022; 11:252. [PMID: 35053368 PMCID: PMC8773500 DOI: 10.3390/cells11020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.
Collapse
Affiliation(s)
- Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| |
Collapse
|
7
|
Shi Q, Sun H, Timm S, Zhang S, Huang W. Photorespiration Alleviates Photoinhibition of Photosystem I under Fluctuating Light in Tomato. PLANTS 2022; 11:plants11020195. [PMID: 35050082 PMCID: PMC8780929 DOI: 10.3390/plants11020195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
Fluctuating light (FL) is a typical natural light stress that can cause photodamage to photosystem I (PSI). However, the effect of growth light on FL-induced PSI photoinhibition remains controversial. Plants grown under high light enhance photorespiration to sustain photosynthesis, but the contribution of photorespiration to PSI photoprotection under FL is largely unknown. In this study, we examined the photosynthetic performance under FL in tomato (Lycopersicon esculentum) plants grown under high light (HL-plants) and moderate light (ML-plants). After an abrupt increase in illumination, the over-reduction of PSI was lowered in HL-plants, resulting in a lower FL-induced PSI photoinhibition. HL-plants displayed higher capacities for CO2 fixation and photorespiration than ML-plants. Within the first 60 s after transition from low to high light, PSII electron transport was much higher in HL-plants, but the gross CO2 assimilation rate showed no significant difference between them. Therefore, upon a sudden increase in illumination, the difference in PSII electron transport between HL- and ML-plants was not attributed to the Calvin–Benson cycle but was caused by the change in photorespiration. These results indicated that the higher photorespiration in HL-plants enhanced the PSI electron sink downstream under FL, which mitigated the over-reduction of PSI and thus alleviated PSI photoinhibition under FL. Taking together, we here for the first time propose that photorespiration acts as a safety valve for PSI photoprotection under FL.
Collapse
Affiliation(s)
- Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany;
| | - Shibao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- Correspondence:
| |
Collapse
|