1
|
Lamichhane JR, Barbetti MJ, Chilvers MI, Pandey AK, Steinberg C. Exploiting root exudates to manage soil-borne disease complexes in a changing climate. Trends Microbiol 2024; 32:27-37. [PMID: 37598008 DOI: 10.1016/j.tim.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/21/2023]
Abstract
Ongoing climate change will both profoundly impact land-use (e.g., changes in crop species or cultivar and cropping practices) and abiotic factors (e.g., moisture and temperature), which will in turn alter plant-microorganism interactions in soils, including soil-borne pathogens (i.e., plant pathogenic bacteria, fungi, oomycetes, viruses, and nematodes). These pathogens often cause soil-borne disease complexes, which, due to their complexity, frequently remain undiagnosed and unmanaged, leading to chronic yield and quality losses. Root exudates are a complex group of organic substances released in the rhizosphere with potential to recruit, repel, stimulate, inhibit, or kill other organisms, including the detrimental ones. An improved understanding of how root exudates affect interspecies and/or interkingdom interactions in the rhizosphere under ongoing climate change is a prerequisite to effectively manage plant-associated microbes, including those causing diseases.
Collapse
Affiliation(s)
- Jay Ram Lamichhane
- INRAE, Université Fédérale de Toulouse, UMR AGIR, F-31326 Castanet-Tolosan Cedex, France.
| | - Martin J Barbetti
- School of Agriculture and Environment and the UWA Institute of Agriculture, University of Western Australia, Western Australia 6009, Australia
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata 735225, West Bengal, India
| | - Christian Steinberg
- Agroécologie, INRAE Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
2
|
Fortier M, Lemyre J, Ancelin E, Oulyadi H, Driouich A, Vicré M, Follet-Gueye ML, Guilhaudis L. Development of a root exudate collection protocol for metabolomics analysis using Nuclear Magnetic Resonance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111694. [PMID: 37004941 DOI: 10.1016/j.plantsci.2023.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Large amounts of root exudates are released by plant roots into the soil. Due to their importance in regulating the rhizosphere properties, it is necessary to unravel the precise composition and function of exudates at the root-soil interface. However, obtaining root exudates without inducing artefacts is a difficult task. To analyse the low molecular weight molecules secreted by pea roots, a protocol of root exudate collection was developed to perform a metabolomics analysis using Nuclear Magnetic Resonance (NMR). To date a few NMR studies are dedicated to root exudates. Plant culture, exudates collection and sample preparation methods had thus to be adapted to the NMR approach. Here, pea seedlings were hydroponically grown. The obtained NMR fingerprints show that osmotic stress increases the quantity of the exudates but not their diversity. We therefore selected a protocol reducing the harvest time and using an ionic solvent and applied it to the analysis of faba bean exudates. NMR analysis of the metabolic profiles allowed to discriminate between pea and faba bean according to their exudate composition. This protocol is therefore very promising for studying the composition of root exudates from different plant species as well as their evolution in response to different environmental conditions or pathophysiological events.
Collapse
Affiliation(s)
- Mélanie Fortier
- Univ Rouen Normandie, Laboratoire COBRA (UMR 6014 & FR 3038), INSA de Rouen, CNRS, F-76000 Rouen, France; Univ Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, F-76000 Rouen, France
| | - Julie Lemyre
- Univ Rouen Normandie, Laboratoire COBRA (UMR 6014 & FR 3038), INSA de Rouen, CNRS, F-76000 Rouen, France
| | - Edouard Ancelin
- Univ Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, F-76000 Rouen, France
| | - Hassan Oulyadi
- Univ Rouen Normandie, Laboratoire COBRA (UMR 6014 & FR 3038), INSA de Rouen, CNRS, F-76000 Rouen, France
| | - Azeddine Driouich
- Univ Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, F-76000 Rouen, France
| | - Maïté Vicré
- Univ Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, F-76000 Rouen, France
| | - Marie-Laure Follet-Gueye
- Univ Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, F-76000 Rouen, France.
| | - Laure Guilhaudis
- Univ Rouen Normandie, Laboratoire COBRA (UMR 6014 & FR 3038), INSA de Rouen, CNRS, F-76000 Rouen, France.
| |
Collapse
|
3
|
Fortier M, Lemaitre V, Gaudry A, Pawlak B, Driouich A, Follet-Gueye ML, Vicré M. A fine-tuned defense at the pea root caps: Involvement of border cells and arabinogalactan proteins against soilborne diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1132132. [PMID: 36844081 PMCID: PMC9947496 DOI: 10.3389/fpls.2023.1132132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Plants have to cope with a myriad of soilborne pathogens that affect crop production and food security. The complex interactions between the root system and microorganisms are determinant for the whole plant health. However, the knowledge regarding root defense responses is limited as compared to the aerial parts of the plant. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in these organs. The root cap releases cells termed root "associated cap-derived cells" (AC-DCs) or "border cells" embedded in a thick mucilage layer forming the root extracellular trap (RET) dedicated to root protection against soilborne pathogens. Pea (Pisum sativum) is the plant model used to characterize the composition of the RET and to unravel its function in root defense. The objective of this paper is to review modes of action of the RET from pea against diverse pathogens with a special focus on root rot disease caused by Aphanomyces euteiches, one of the most widely occurring and large-scale pea crop diseases. The RET, at the interface between the soil and the root, is enriched in antimicrobial compounds including defense-related proteins, secondary metabolites, and glycan-containing molecules. More especially arabinogalactan proteins (AGPs), a family of plant extracellular proteoglycans belonging to the hydroxyproline-rich glycoproteins were found to be particularly present in pea border cells and mucilage. Herein, we discuss the role of RET and AGPs in the interaction between roots and microorganisms and future potential developments for pea crop protection.
Collapse
|
4
|
Oota M, Toyoda S, Kotake T, Wada N, Hashiguchi M, Akashi R, Ishikawa H, Favery B, Tsai AYL, Sawa S. Rhamnogalacturonan-I as a nematode chemoattractant from Lotus corniculatus L. super-growing root culture. FRONTIERS IN PLANT SCIENCE 2023; 13:1008725. [PMID: 36777533 PMCID: PMC9908596 DOI: 10.3389/fpls.2022.1008725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The soil houses a tremendous amount of micro-organisms, many of which are plant parasites and pathogens by feeding off plant roots for sustenance. Such root pathogens and parasites often rely on plant-secreted signaling molecules in the rhizosphere as host guidance cues. Here we describe the isolation and characterization of a chemoattractant of plant-parasitic root-knot nematodes (Meloidogyne incognita, RKN). METHODS The Super-growing Root (SR) culture, consisting of excised roots from the legume species Lotus corniculatus L., was found to strongly attract infective RKN juveniles and actively secrete chemoattractants into the liquid culture media. The chemo-attractant in the culture media supernatant was purified using hydrophobicity and anion exchange chromatography, and found to be enriched in carbohydrates. RESULTS Monosaccharide analyses suggest the chemo-attractant contains a wide array of sugars, but is enriched in arabinose, galactose and galacturonic acid. This purified chemoattractant was shown to contain pectin, specifically anti-rhamnogalacturonan-I and anti-arabinogalactan protein epitopes but not anti-homogalacturonan epitopes. More importantly, the arabinose and galactose sidechain groups were found to be essential for RKN-attracting activities. This chemo-attractant appears to be specific to M. incognita, as it wasn't effective in attracting other Meloidogyne species nor Caenorhabditis elegans. DISCUSSION This is the first report to identify the nematode attractant purified from root exudate of L corniculatus L. Our findings re-enforce pectic carbohydrates as important chemicals mediating micro-organism chemotaxis in the soil, and also highlight the unexpected utilities of the SR culture system in root pathogen research.
Collapse
Affiliation(s)
- Morihiro Oota
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Syuuto Toyoda
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Naoki Wada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Bruno Favery
- Institut national de recherche pour l'agriculture, l'alimentation et l’environnement (INRAE), Université Côte d’Azur, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Allen Yi-Lun Tsai
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Rubiales D, Khazaei H. Advances in disease and pest resistance in faba bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3735-3756. [PMID: 35182168 DOI: 10.1007/s00122-021-04022-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Faba bean (Vicia faba) is a grain legume crop widely cultivated in temperate areas for food and feed. Its productivity can be constrained by numerous diseases and pests that can be managed by a number of strategies, complemented with the deployment of resistant cultivars in an integrated manner. Few sources of resistance are available to some of them, although their phenotypic expression is usually insufficiently described, and their genetic basis is largely unknown. A few DNA markers have been developed for resistance to rust, ascochyta blight, and broomrape, but not yet for other diseases or pests. Still, germplasm screenings are allowing the identification of resistances that are being accumulated by classical breeding, succeeding in the development of cultivars with moderate levels of resistance. The adoption of novel phenotyping approaches and the unprecedented development of genomic resources along with speed breeding tools are speeding up resistance characterization and effective use in faba bean breeding.
Collapse
Affiliation(s)
- Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal s/n, 14004, Córdoba, Spain.
| | | |
Collapse
|
6
|
Elicitation of Roots and AC-DC with PEP-13 Peptide Shows Differential Defense Responses in Multi-Omics. Cells 2022; 11:cells11162605. [PMID: 36010682 PMCID: PMC9406913 DOI: 10.3390/cells11162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
The root extracellular trap (RET) has emerged as a specialized compartment consisting of root AC-DC and mucilage. However, the RET’s contribution to plant defense is still poorly understood. While the roles of polysaccharides and glycoproteins secreted by root AC-DC have started to be elucidated, how the low-molecular-weight exudates of the RET contribute to root defense is poorly known. In order to better understand the RET and its defense response, the transcriptomes, proteomes and metabolomes of roots, root AC-DC and mucilage of soybean (Glycine max (L.) Merr, var. Castetis) upon elicitation with the peptide PEP-13 were investigated. This peptide is derived from the pathogenic oomycete Phytophthora sojae. In this study, the root and the RET responses to elicitation were dissected and sequenced using transcriptional, proteomic and metabolomic approaches. The major finding is increased synthesis and secretion of specialized metabolites upon induced defense activation following PEP-13 peptide elicitation. This study provides novel findings related to the pivotal role of the root extracellular trap in root defense.
Collapse
|