1
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Liu X, Sun W, Liu H, Wang L, Manzoor MA, Wang J, Jiu S, Zhang C. PavSPLs are key regulators of growth, development, and stress response in sweet cherry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112279. [PMID: 39401543 DOI: 10.1016/j.plantsci.2024.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are plant-specific transcription factors essential for plant growth, development, and stress responses. Their roles in sweet cherry are not well understood. In this study, we identified and isolated 16 SPL genes from the sweet cherry genome, categorizing them into 5 subfamilies, with 12 PavSPLs predicted as miR156 targets. Promoter regions of PavSPLs contain cis-elements associated with light, stress, and phytohormone responses, indicating their role in biological processes and abiotic stress responses. Seasonal expression analysis showed that PavSPL regulates sweet cherry recovery after dormancy. Gibberellin (GA) treatment reduced PavSPL expression, indicating its role in GA-mediated processes. PavSPL14 overexpression in Arabidopsis thaliana resulted in earlier flowering and increased plant height and growth. Yeast two-hybrid assays showed an interaction between PavSPL14 and DELLA protein PavDWARF8, suggesting PavSPL14 and PavDWARF8 co-regulate growth and development. These findings lay the groundwork for further research on PavSPL function in sweet cherry.
Collapse
Affiliation(s)
- Xunju Liu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Wanxia Sun
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Haobo Liu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Li Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Muhammad Aamir Manzoor
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Jiyuan Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Songtao Jiu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Caixi Zhang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| |
Collapse
|
3
|
Ruan R, Huang K, Luo H, Zhang C, Xi D, Pei J, Liu H. Occurrence and Characterization of Sclerotinia sclerotiorum Causing Fruit Rot on Sweet Cherry in Southern China. PLANTS (BASEL, SWITZERLAND) 2023; 12:4165. [PMID: 38140492 PMCID: PMC10747181 DOI: 10.3390/plants12244165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Sweet cherry (Prunus avium L.) is widely planted in northern China due to its high economic value, and its cultivation has gradually spread south to warm regions. However, fruit rot, observed on the young fruits, poses a considerable threat to the development of sweet cherry. To determine the causal agent, morphological observation, molecular identification, and pathogenicity tests were performed on isolates obtained from diseased fruits. As a result, Sclerotinia sclerotiorum was identified as the pathogen. Pathogenicity tests on different sweet cherry cultivars indicated that 'Summit' was highly sensitive to S. sclerotiorum, whereas 'Hongmi' showed significant resistance. Besides sweet cherry, S. sclerotiorum could also infect other vegetable crops we tested, such as cowpea, soybean, tomato, and chili. Fungicide sensitivity and efficacy assays showed that both fludioxonil and pyraclostrobin can effectively inhibit the mycelial growth of S. sclerotiorum and decrease disease incidences on the young fruits of sweet cherry. Furthermore, genome sequencing resulted in a 37.8 Mb assembly of S. sclerotiorum strain ScSs1, showing abundant SNPs, InDels, and SVs with the genome of S. sclerotiorum reference strain 1980 UF-70. The above results provide an important basis for controlling the fruit rot of sweet cherry caused by S. sclerotiorum in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Liu
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China; (R.R.)
| |
Collapse
|
4
|
Liu X, Xu Y, Sun W, Wang J, Gao Y, Wang L, Xu W, Wang S, Jiu S, Zhang C. Strigolactones modulate stem length and diameter of cherry rootstocks through interaction with other hormone signaling pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1092654. [PMID: 36844087 PMCID: PMC9948674 DOI: 10.3389/fpls.2023.1092654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Stem growth and development has considerable effects on plant architecture and yield performance. Strigolactones (SLs) modulate shoot branching and root architecture in plants. However, the molecular mechanisms underlying SLs regulate cherry rootstocks stem growth and development remain unclear. Our studies showed that the synthetic SL analog rac-GR24 and the biosynthetic inhibitor TIS108 affected stem length and diameter, aboveground weight, and chlorophyll content. The stem length of cherry rootstocks following TIS108 treatment reached a maximum value of 6.97 cm, which was much higher than that following rac-GR24 treatments at 30 days after treatment. Stem paraffin section showed that SLs affected cell size. A total of 1936, 743, and 1656 differentially expressed genes (DEGs) were observed in stems treated with 10 μM rac-GR24, 0.1 μM rac-GR24, and 10 μM TIS108, respectively. RNA-seq results highlighted several DEGs, including CKX, LOG, YUCCA, AUX, and EXP, which play vital roles in stem growth and development. UPLC-3Q-MS analysis revealed that SL analogs and inhibitors affected the levels of several hormones in the stems. The endogenous GA3 content of stems increased significantly with 0.1 μM rac-GR24 or 10 μM TIS108 treatment, which is consistent with changes in the stem length following the same treatments. This study demonstrated that SLs affected stem growth of cherry rootstocks by changing other endogenous hormone levels. These results provide a solid theoretical basis for using SLs to modulate plant height and achieve sweet cherry dwarfing and high-density cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songtao Jiu
- *Correspondence: Songtao Jiu, ; Caixi Zhang,
| | - Caixi Zhang
- *Correspondence: Songtao Jiu, ; Caixi Zhang,
| |
Collapse
|
5
|
Identification of Key Genes Related to Dormancy Control in Prunus Species by Meta-Analysis of RNAseq Data. PLANTS 2022; 11:plants11192469. [PMID: 36235335 PMCID: PMC9573011 DOI: 10.3390/plants11192469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Bud dormancy is a genotype-dependent mechanism observed in Prunus species in which bud growth is inhibited, and the accumulation of a specific amount of chilling (endodormancy) and heat (ecodormancy) is necessary to resume growth and reach flowering. We analyzed publicly available transcriptome data from fifteen cultivars of four Prunus species (almond, apricot, peach, and sweet cherry) sampled at endo- and ecodormancy points to identify conserved genes and pathways associated with dormancy control in the genus. A total of 13,018 genes were differentially expressed during dormancy transitions, of which 139 and 223 were of interest because their expression profiles correlated with endo- and ecodormancy, respectively, in at least one cultivar of each species. The endodormancy-related genes comprised transcripts mainly overexpressed during chilling accumulation and were associated with abiotic stresses, cell wall modifications, and hormone regulation. The ecodormancy-related genes, upregulated after chilling fulfillment, were primarily involved in the genetic control of carbohydrate regulation, hormone biosynthesis, and pollen development. Additionally, the integrated co-expression network of differentially expressed genes in the four species showed clusters of co-expressed genes correlated to dormancy stages and genes of breeding interest overlapping with quantitative trait loci for bloom time and chilling and heat requirements.
Collapse
|
6
|
Liu X, Wang J, Sabir IA, Sun W, Wang L, Xu Y, Zhang N, Liu H, Jiu S, Liu L, Zhang C. PavGA2ox-2L inhibits the plant growth and development interacting with PavDWARF in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:299-309. [PMID: 35932654 DOI: 10.1016/j.plaphy.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dwarf dense planting is helpful to improve the yield and quality of sweet cherry, which has enormous market demand. GA2oxs (GA oxidases) affect plant height, dormancy release, flower development, and seed germination by participating in the metabolic regulation and signal transduction of GA (Gibberellin). However, the research on GA2ox in sweet cherry is little and worthy of further investigation. Therefore, we identified the PavGA2ox-2L gene from sweet cherry, close to PynGA2ox-2 from Prunus yedoensis var. Nudiflora. The phylogenetic analysis indicated conserved functions with these evolutionarily closer GA2ox subfamily genes. Subcellular localization forecast analysis indicated that PavGA2ox-2L was localized in the nucleus or cytoplasm. The expression levels of PavGA2ox-2L were higher in winter, indicating that PavGA2ox-2L promoted maintained flower bud dormancy. The expression levels of PavGA2ox-2L were significantly increased after GA4+7 treatment while decreased after GR24 (a synthetic analog of SLs (Strigolactones)) or TIS108 (a triazole-type SL-biosynthesis inhibitor) treatments. Over-expression of PavGA2ox-2L resulted in decreased plant height, delayed flowering time, and low seed germination rate in Arabidopsis thaliana. Furthermore, the interaction between PavGA2ox-2L and PavDWARF was verified by Y2H and BiFC assays. In the current investigation, PavGA2ox-2L functions as a GA metabolic gene that promotes dwarf dense planting, delays flowering time, and inhibits seed germination. In addition, it also participates in regulating plant growth and development through the interaction with the critical negative regulator PavDWARF of Gibberellin. These results will help us better explore the molecular mechanism of GA2ox-mediated dwarf and late-maturing varieties for fruit trees.
Collapse
Affiliation(s)
- Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Niangong Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Haobo Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Lu Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| |
Collapse
|