1
|
Fahad M, Tariq L, Altaf MT, Shahnawaz M, Aslam M, Liaqat W, Ullah I, Ullah I, Mohamed HI, Basit A. In Silico Identification and Characterization of Rare Cold Inducible 2 (RCI2) Gene Family in Cotton. Biochem Genet 2024; 62:4567-4590. [PMID: 38347291 DOI: 10.1007/s10528-023-10663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/31/2023] [Indexed: 11/29/2024]
Abstract
RCI2/PMP3s are involved in biotic and abiotic stresses and have an influence on the regulation of many genes. RCI2/PMP3 genes, which particularly encode small membrane proteins of the PMP3 family, are involved in abiotic stress responses in plants. In this work, in silico studies were used to investigate RCI2's potential function in stress tolerance and organogenesis. We conducted an extensive study of the RCI2 gene family and revealed 36 RCI2 genes from cotton species that were distributed over 36 chromosomes of the cotton genome. Functional and phylogenetic examination of the RCI2/PMP3 gene family has been studied in Arabidopsis, but in cotton, the RCI2/PMP3 genes have not yet been studied. Phylogenetic and sequencing studies revealed that cotton RCI2s are conserved, with most of them categorized into six distinct clades. A chromosome distribution and localization study indicated that cotton RCI2 genes were distributed unevenly on 36 chromosomes with segmental duplications, suggesting that the cotton RCI2 family is evolutionarily conserved. Many cis-elements related to stress responsiveness, development, and hormone responsiveness were detected in the promoter regions of the cotton RCI2. Moreover, the 36 cotton RCI2s revealed tissue-specific expression patterns in the development of cotton performed by transcriptome analysis. Gene structure analysis indicated that nearly all RCI2 genes have two exons and one intron. All of the cotton RCI2 genes were highly sensitive to drought, abscisic acid, salt, and cold treatments, demonstrating that they may be employed as genetic objects to produce stress-resistant plants.
Collapse
Affiliation(s)
- Muhammad Fahad
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Tanveer Altaf
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Muhammad Shahnawaz
- Department of Plant Breeding and Genetics, University College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| | - Mudassir Aslam
- Department of Plant Breeding and Genetics, University College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Inayat Ullah
- Department of Agricultural Mechanization and Renewable Energy Technologies, The University of Agriculture Peshawar, Peshawar, 25130, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| | - Abdul Basit
- Department of Horticulture, Kyungpook National University, Daegu, 41566, South Korea
| |
Collapse
|
2
|
Yan B, Zhang L, Jiao K, Wang Z, Yong K, Lu M. Vesicle formation-related protein CaSec16 and its ankyrin protein partner CaANK2B jointly enhance salt tolerance in pepper. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154240. [PMID: 38603993 DOI: 10.1016/j.jplph.2024.154240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Vesicle transport plays important roles in plant tolerance against abiotic stresses. However, the contribution of a vesicle formation related protein CaSec16 (COPII coat assembly protein Sec16-like) in pepper tolerance to salt stress remains unclear. In this study, we report that the expression of CaSec16 was upregulated by salt stress. Compared to the control, the salt tolerance of pepper with CaSec16-silenced was compromised, which was shown by the corresponding phenotypes and physiological indexes, such as the death of growing point, the aggravated leaf wilting, the higher increment of relative electric leakage (REL), the lower content of total chlorophyll, the higher accumulation of dead cells, H2O2, malonaldehyde (MDA), and proline (Pro), and the inhibited induction of marker genes for salt-tolerance and vesicle transport. In contrast, the salt tolerance of pepper was enhanced by the transient overexpression of CaSec16. In addition, heterogeneously induced CaSec16 protein did not enhance the salt tolerance of Escherichia coli, an organism lacking the vesicle transport system. By yeast two-hybrid method, an ankyrin protein, CaANK2B, was identified as the interacting protein of CaSec16. The expression of CaANK2B showed a downward trend during the process of salt stress. Compared with the control, pepper plants with transient-overexpression of CaANK2B displayed increased salt tolerance, whereas those with CaANK2B-silenced exhibited reduced salt tolerance. Taken together, both the vesicle formation related protein CaSec16 and its interaction partner CaANK2B can improve the pepper tolerance to salt stress.
Collapse
Affiliation(s)
- Bentao Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linyang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kexin Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenze Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kang Yong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Wu J, Zhang F, Liu G, Abudureheman R, Bai S, Wu X, Zhang C, Ma Y, Wang X, Zha Q, Zhong H. Transcriptome and coexpression network analysis reveals properties and candidate genes associated with grape ( Vitis vinifera L.) heat tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1270933. [PMID: 38023926 PMCID: PMC10643163 DOI: 10.3389/fpls.2023.1270933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Temperature is one of the most important environmental factors affecting grape season growth and geographical distribution. With global warming and the increasing occurrence of extreme high-temperature weather, the impact of high temperatures on grape production has intensified. Therefore, identifying the molecular regulatory networks and key genes involved in grape heat tolerance is crucial for improving the resistance of grapes and promoting sustainable development in grape production. In this study, we observed the phenotypes and cellular structures of four grape varieties, namely, Thompson Seedless (TS), Brilliant Seedless (BS), Jumeigui (JMG), and Shine Muscat (SM), in the naturally high-temperature environment of Turpan. Heat tolerance evaluations were conducted. RNA-seq was performed on 36 samples of the four varieties under three temperature conditions (28°C, 35°C, and 42°C). Through differential expression analysis revealed the fewest differentially expressed genes (DEGs) between the heat-tolerant materials BS and JMG, and the DEGs common to 1890 were identified among the four varieties. The number of differentially expressed genes within the materials was similar, with a total of 3767 common DEGs identified among the four varieties. KEGG enrichment analysis revealed that fatty acid metabolism, starch and sucrose metabolism, plant hormone signal transduction, the MAPK signaling pathway, and plant-pathogen interactions were enriched in both between different temperatures of the same material, and between different materials of the same temperature. We also conducted statistical and expression pattern analyses of differentially expressed transcription factors. Based on Weighted correlation network analysis (WGCNA), four specific modules highly correlated with grape heat tolerance were identified by constructing coexpression networks. By calculating the connectivity of genes within the modules and expression analysis, six candidate genes (VIT_04s0044g01430, VIT_17s0000g09190, VIT_01s0011g01350, VIT_01s0011g03330, VIT_04s0008g05610, and VIT_16s0022g00540) related to heat tolerance were discovered. These findings provide a theoretical foundation for further understanding the molecular mechanisms of grape heat tolerance and offer new gene resources for studying heat tolerance in grapes.
Collapse
Affiliation(s)
- Jiuyun Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fuchun Zhang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guohong Liu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Riziwangguli Abudureheman
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shijian Bai
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Xinjiang Uighur Autonomous Region of Grapes and Melons Research Institution, Turpan, China
| | - Xinyu Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chuan Zhang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yaning Ma
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiping Wang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Colleges of Horticulture, Northwest A&F University, Xianyang, China
| | - Qian Zha
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Haixia Zhong
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
4
|
Lei L, Pan H, Hu HY, Fan XW, Wu ZB, Li YZ. Characterization of ZmPMP3g function in drought tolerance of maize. Sci Rep 2023; 13:7375. [PMID: 37147346 PMCID: PMC10163268 DOI: 10.1038/s41598-023-32989-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023] Open
Abstract
The genes enconding proteins containing plasma membrane proteolipid 3 (PMP3) domain are responsive to abiotic stresses, but their functions in maize drought tolerance remain largely unknown. In this study, the transgenic maize lines overexpressing maize ZmPMP3g gene were featured by enhanced drought tolerance; increases in total root length, activities of superoxide dismutase and catalase, and leaf water content; and decreases in leaf water potential, levels of O2-·and H2O2, and malondialdehyde content under drought. Under treatments with foliar spraying with abscisic acid (ABA), drought tolerance of both transgenic line Y7-1 overexpressing ZmPMP3g and wild type Ye478 was enhanced, of which Y7-1 showed an increased endogenous ABA and decreased endogenous gibberellin (GA) 1 (significantly) and GA3 (very slightly but not significantly) and Ye478 had a relatively lower ABA and no changes in GA1 and GA3. ZmPMP3g overexpression in Y7-1 affected the expression of multiple key transcription factor genes in ABA-dependent and -independent drought signaling pathways. These results indicate that ZmPMP3g overexpression plays a role in maize drought tolerance by harmonizing ABA-GA1-GA3 homeostasis/balance, improving root growth, enhancing antioxidant capacity, maintaining membrane lipid integrity, and regulating intracellular osmotic pressure. A working model on ABA-GA-ZmPMP3g was proposed and discussed.
Collapse
Affiliation(s)
- Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Hong Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Hai-Yang Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhen-Bo Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
5
|
Zhang D, Zhang Z, Li C, Xing Y, Luo Y, Wang X, Li D, Ma Z, Cai H. Overexpression of MsRCI2D and MsRCI2E Enhances Salt Tolerance in Alfalfa ( Medicago sativa L.) by Stabilizing Antioxidant Activity and Regulating Ion Homeostasis. Int J Mol Sci 2022; 23:9810. [PMID: 36077224 PMCID: PMC9456006 DOI: 10.3390/ijms23179810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Rare cold-inducible 2 (RCI2) genes from alfalfa (Medicago sativa L.) are part of a multigene family whose members respond to a variety of abiotic stresses by regulating ion homeostasis and stabilizing membranes. In this study, salt, alkali, and ABA treatments were used to induce MsRCI2D and MsRCI2E expression in alfalfa, but the response time and the expression intensity of the MsRCI2D,-E genes were different under specific treatments. The expression intensity of the MsRCI2D gene was the highest in salt- and alkali-stressed leaves, while the MsRCI2E gene more rapidly responded to salt and ABA treatment. In addition to differences in gene expression, MsRCI2D and MsRCI2E differ in their subcellular localization. Akin to MtRCI2D from Medicago truncatula, MsRCI2D is also localized in the cell membrane, while MsRCI2E is different from MtRCI2E, localized in the cell membrane and the inner membrane. This difference might be related to an extra 20 amino acids in the C-terminal tail of MsRCI2E. We investigated the function of MsRCI2D and MsRCI2E proteins in alfalfa by generating transgenic alfalfa chimeras. Compared with the MsRCI2E-overexpressing chimera, under high-salinity stress (200 mmol·L-1 NaCl), the MsRCI2D-overexpressing chimera exhibited a better phenotype, manifested as a higher chlorophyll content and a lower MDA content. After salt treatment, the enzyme activities of SOD, POD, CAT, and GR in MsRCI2D- and -E-overexpressing roots were significantly higher than those in the control. In addition, after salt stress, the Na+ content in MsRCI2D- and -E-transformed roots was lower than that in the control; K+ was higher than that in the control; and the Na+/K+ ratio was lower than that in the control. Correspondingly, H+-ATPase, SOS1, and NHX1 genes were significantly up-regulated, and the HKT gene was significantly down-regulated after 6 h of salt treatment. MsRCI2D was also found to regulate the expression of the MsRCI2B and MsRCI2E genes, and the MsRCI2E gene could alter the expression of the MsRCI2A, MsRCI2B, and MsRCI2D genes. MsRCI2D- and -E-overexpressing alfalfa was found to have higher salt tolerance, manifested as improved activity of antioxidant enzymes, reduced content of reactive oxygen species, and sustained Na+ and K+ ion balance by regulating the expression of the H+-ATPase, SOS1, NHX1, HKT, and MsRCI2 genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hua Cai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|