1
|
Chen X, Li Y, Liu M, Ai G, Zhang X, Wang J, Tian S, Yuan L. A sexually and vegetatively reproducible diploid seedless watermelon inducer via ClHAP2 mutation. NATURE PLANTS 2024; 10:1446-1452. [PMID: 39367255 DOI: 10.1038/s41477-024-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 10/06/2024]
Abstract
Seedless watermelon production relies on triploid cultivation or the application of plant growth regulators. However, challenges such as chromosomal imbalances in triploid varieties and concerns about food safety with growth regulator application impede progress. To tackle these challenges, we developed a sexually and vegetatively reproducible inducer line of diploid seedless watermelon by disrupting the double fertilization process. This innovative approach has enabled the successful induction of diploid seedless watermelon across diverse varieties.
Collapse
Affiliation(s)
- Xiner Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Yuxiu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Man Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Gongli Ai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Xian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Jiafa Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Shujuan Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Li Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
2
|
Jiang Y, Zhang A, He W, Li Q, Zhao B, Zhao H, Ke X, Guo Y, Sun P, Yang T, Wang Z, Jiang B, Shen J, Li Z. GRAS family member LATERAL SUPPRESSOR regulates the initiation and morphogenesis of watermelon lateral organs. PLANT PHYSIOLOGY 2023; 193:2592-2604. [PMID: 37584314 DOI: 10.1093/plphys/kiad445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023]
Abstract
The lateral organs of watermelon (Citrullus lanatus), including lobed leaves, branches, flowers, and tendrils, together determine plant architecture and yield. However, the genetic controls underlying lateral organ initiation and morphogenesis remain unclear. Here, we found that knocking out the homologous gene of shoot branching regulator LATERAL SUPPRESSOR in watermelon (ClLs) repressed the initiation of branches, flowers, and tendrils and led to developing round leaves, indicating that ClLs undergoes functional expansion compared with its homologs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum). Using ClLs as the bait to screen against the cDNA library of watermelon, we identified several ClLs-interacting candidate proteins, including TENDRIL (ClTEN), PINOID (ClPID), and APETALA1 (ClAP1). Protein-protein interaction assays further demonstrated that ClLs could directly interact with ClTEN, ClPID, and ClAP1. The mRNA in situ hybridization assay revealed that the transcriptional patterns of ClLs overlapped with those of ClTEN, ClPID, and ClAP1 in the axillary meristems and leaf primordia. Mutants of ClTEN, ClPID, and ClAP1 generated by the CRISPR/Cas9 gene editing system lacked tendrils, developed round leaves, and displayed floral diapause, respectively, and all these phenotypes could be observed in ClLs knockout lines. Our findings indicate that ClLs acts as lateral organ identity protein by forming complexes with ClTEN, ClPID, and ClAP1, providing several gene targets for transforming the architecture of watermelon.
Collapse
Affiliation(s)
- Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Anran Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenjing He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingqing Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xubo Ke
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalu Guo
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Zhou KD, Zhang CX, Niu FR, Bai HC, Wu DD, Deng JC, Qian HY, Jiang YL, Ma W. Exploring Plant Meiosis: Insights from the Kinetochore Perspective. Curr Issues Mol Biol 2023; 45:7974-7995. [PMID: 37886947 PMCID: PMC10605258 DOI: 10.3390/cimb45100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.
Collapse
Affiliation(s)
- Kang-Di Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Cai-Xia Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| | - Fu-Rong Niu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hao-Chen Bai
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Dan-Dan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jia-Cheng Deng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Hong-Yuan Qian
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Yun-Lei Jiang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| |
Collapse
|
4
|
Nagle MF, Nahata SS, Zahl B, Niño de Rivera A, Tacker XV, Elorriaga E, Ma C, Goralogia GS, Klocko AL, Gordon M, Joshi S, Strauss SH. Knockout of floral and meiosis genes using CRISPR/Cas9 produces male-sterility in Eucalyptus without impacts on vegetative growth. PLANT DIRECT 2023; 7:e507. [PMID: 37456612 PMCID: PMC10345981 DOI: 10.1002/pld3.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Eucalyptus spp. are widely cultivated for the production of pulp, energy, essential oils, and as ornamentals. However, their dispersal from plantings, especially when grown as an exotic, can cause ecological disruptions. To provide new tools for prevention of sexual dispersal by pollen as well as to induce male-sterility for hybrid breeding, we studied the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated knockout of three floral genes in both FT-expressing (early-flowering) and non-FT genotypes. We report male-sterile phenotypes resulting from knockout of the homologs of all three genes, including one involved in meiosis and two regulating early stages of pollen development. The targeted genes were Eucalyptus homologs of REC8 (EREC8), TAPETAL DEVELOPMENT AND FUNCTION 1 (ETDF1), and HECATE3 (EHEC3-like). The erec8 knockouts yielded abnormal pollen grains and a predominance of inviable pollen, whereas the etdf1 and ehec3-like knockouts produced virtually no pollen. In addition to male-sterility, both erec8 and ehec3-like knockouts may provide complete sterility because the failure of erec8 to undergo meiosis is expected to be independent of sex, and ehec3-like knockouts produce flowers with shortened styles and no visible stigmas. When comparing knockouts to controls in wild-type (non-early-flowering) backgrounds, we did not find visible morphological or statistical differences in vegetative traits, including average single-leaf mass, stem volume, density of oil glands, or chlorophyll in leaves. Loss-of-function mutations in any of these three genes show promise as a means of inducing male- or complete sterility without impacting vegetative development.
Collapse
Affiliation(s)
- Michael F. Nagle
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Surbhi S. Nahata
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Bahiya Zahl
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Xavier V. Tacker
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Estefania Elorriaga
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Cathleen Ma
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Greg S. Goralogia
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Amy L. Klocko
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Michael Gordon
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Sonali Joshi
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| | - Steven H. Strauss
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
5
|
Wang Y, Zhou L, Guo H, Cheng H. Genome-Wide Analysis of the Rad21/ REC8 Gene Family in Cotton ( Gossypium spp.). Genes (Basel) 2023; 14:genes14050993. [PMID: 37239353 DOI: 10.3390/genes14050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cohesin is a ring-shaped protein complex and plays a critical role in sister chromosome cohesion, which is a key event during mitosis and meiosis. Meiotic recombination protein REC8 is one of the subunits of the cohesion complex. Although REC8 genes have been characterized in some plant species, little is known about them in Gossypium. In this study, 89 REC8 genes were identified and analyzed in 16 plant species (including 4 Gossypium species); 12 REC8 genes were identified in Gossypium. hirsutum, 11 in Gossypium. barbadense, 7 in Gossypium. raimondii, and 5 in Gossypium. arboreum. In a phylogenetic analysis, the 89 RCE8 genes clustered into 6 subfamilies (I-VI). The chromosome location, exon-intron structure, and motifs of the REC8 genes in the Gossypium species were also analyzed. Expression patterns of GhREC8 genes in various tissues and under abiotic stress treatments were analyzed based on public RNA-seq data, which indicated that GhREC8 genes might have different functions in growth and development. Additionally, qRT-PCR analysis showed that MeJA, GA, SA, and ABA treatments could induce the expression of GhREC8 genes. In general, the genes of the REC8 gene family of cotton were systematically analyzed, and their potential function in cotton mitosis, meiosis, and in response to abiotic stress and hormones were preliminary predicted, which provided an important basis for further research on cotton development and resistance to abiotic stress.
Collapse
Affiliation(s)
- Yali Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lili Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|