1
|
Alekaram S, Hemmati SA, Ziaee M, Stelinski LL. Evaluation of diets from various maize hybrids reveals potential tolerance traits against Spodoptera littoralis (Boisd) as measured by developmental and digestive performance. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:642-651. [PMID: 39329175 DOI: 10.1017/s0007485324000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae) is a highly polyphagous insect that significantly reduces agricultural production of several food staples. We evaluated performance of S. littoralis on several meridic diets based on various maize hybrids, including Oteel, Simon, Valbum, SC703, and SC704. Growth, feeding behaviours, and activity of digestive enzymes of S. littoralis were examined under laboratory conditions. In addition, selected biochemical characteristics of maize hybrid seeds were evaluated, including starch, protein, anthocyanin, as well as phenolic and flavonoid contents, to examine relationships between plant properties and digestive performance of S. littoralis. Performance of S. littoralis on maize hybrids, as measured by nutritional indices, was related to both proteolytic and amylolytic activities quantified using gut extracts. Larval S. littoralis reared on SC703 exhibited the highest efficiency of conversion of digested food, while the lowest was recorded in those fed on the Oteel hybrid. S. littoralis reared on SC703 and Oteel also exhibited the highest and lowest relative growth rates, respectively. The highest levels of proteolytic activity in S. littoralis were measured from larvae reared on the SC703 hybrid, while the lowest levels occurred on the Oteel and Valbum hybrids. Amylolytic activity was lowest in larvae reared on SC703 and Valbum hybrids and highest in larvae reared on the Oteel hybrid. Our results suggest that the SC703 hybrid was the most suitable host for S. littoralis, while the Oteel hybrid demonstrated the greatest level of tolerance against S. littoralis of those evaluated. We discuss the potential utility of maize hybrids exhibiting tolerance traits against this cosmopolitan pest with reference to cultivation of tolerant varieties and identification of specific tolerance traits.
Collapse
Affiliation(s)
- Shirin Alekaram
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Ali Hemmati
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masumeh Ziaee
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| |
Collapse
|
2
|
Dos Santos CWV, Da Silva AT, de Almeida Barros AC, do Nascimento JS, Meireles Grillo LA, Gomes FS, Pereira HJV. A new trypsin inhibitor from Centrosema plumieri effective against digestive proteases from Tribolium castaneum, an eco-friendly alternative. Protein Expr Purif 2024; 222:106534. [PMID: 38897399 DOI: 10.1016/j.pep.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Tribolium castaneum, also known as the red flour beetle, is a polyphagous pest that seriously damages agricultural products, including stored and processed grains. Researchers have aimed to discover alternative pest control mechanisms that are less harmful to the ecosystem than those currently used. We conduct the purification and characterization of a protease inhibitor from C. plumieri seeds and an in vitro evaluation of its insecticidal potential against the insect pest T. castaneum. The trypsin inhibitor was isolated from C. plumieri seeds in a single-step DEAE-Sepharose column chromatography and had a molecular mass of 50 kDA. When analyzed for interaction with different proteolytic enzymes, the inhibitor exhibited specificity against trypsin and no activity against other serine proteases such as chymotrypsin and elastase-2. The isolated inhibitor was able to inhibit digestive enzymes of T. castaneum from extracts of the intestine of this insect. Therefore, we conclude that the new protease inhibitor, specific in tryptic inhibition, of protein nature from the seeds of C. plumieri was effective in inhibiting the digestive enzymes of T. castaneum and is a promising candidate in the ecological control of pests.
Collapse
Affiliation(s)
- Cláudio Wilian Victor Dos Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Antônio Thomás Da Silva
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Andrea Carla de Almeida Barros
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Josiel Santos do Nascimento
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Luciano Aparecido Meireles Grillo
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Francis Soares Gomes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil.
| |
Collapse
|
3
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
4
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
Pacheco JS, Teixeira ÉMGF, Paschoal RG, Torres-Santos EC, Simone SGDE, Silva-López REDA. Antileishmanial effects of Crotalaria spectabilis Roth aqueous extracts on Leishmania amazonensis. AN ACAD BRAS CIENC 2023; 95:e20220613. [PMID: 37672397 DOI: 10.1590/0001-3765202320220613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/22/2023] [Indexed: 09/08/2023] Open
Abstract
Fifteen polar extracts from leaf, seed, pod, stem, flower and root of Crotalaria spectabilis were prepared using aqueous systems, based on the principles of green chemistry, and showed different protease inhibitor (PI) activities on trypsin, papain, pepsin and the extracellular L. amazonensis serine protease (LSPIII). The most pronounced inhibitory effect on LSPIII was observed in leaf (CS-P), root, stem, flower (CS-FPVPP) and pod (CS-VA) extracts. Crotalaria extracts exhibited low cytotoxicity on macrophages; however, they decreased the viability of L. amazonensis promastigotes and amastigotes, as observed in leaf (CS-AE, CS-P, CS-T and CS-PVPP), seed (CS-ST), flower and root (CS-RA) extracts. CS-P was chosen to study PI and secondary metabolites and a 10-12 kDa protein, analyzed by mass spectrometry, was identified as a serine PI homologous with papaya latex serine PI. Glycosylated flavonoids, such as quercetins, vitexin and tricin were the major secondary metabolites of CS-P. The presence of PIs in C. spectabilis is a new finding, especially in other organs than seeds since PIs have been reported only in seed legumes. Besides, this is the first report of antileishmanial activity of C. spectabilis extracts and the identification of serine polypeptide PI and glycosylated flavonoids from leaf.
Collapse
Affiliation(s)
- Juliana S Pacheco
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Nethergate, Dundee, DD1 4HN, Scotland, United Kingdom
| | - Érika Maria G F Teixeira
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Ramon G Paschoal
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Eduardo Caio Torres-Santos
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanossomatídeos, Avenida Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Salvatore Giovanni DE Simone
- FIOCRUZ, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Instituto Nacional de Ciências e Tecnologia para Inovação em Doenças Negligenciadas (INCT-IDN), Avenida Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Raquel Elisa DA Silva-López
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Lucena SV, Rufino FP, de Dantas Moura GED, Rabêlo LMA, Monteiro NKV, Ferreira AT, Perales JEA, Uchôa AF, Justo GZ, de Oliveira CFR, Migliolo L, Nader HB, Santos EA, Oliveira AS. The Kunitz chymotrypsin inhibitor from Erythrina velutina seeds displays activity against HeLa cells through arrest in cell cycle. 3 Biotech 2022; 12:19. [PMID: 34926123 PMCID: PMC8674401 DOI: 10.1007/s13205-021-03084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
Erythrina velutina is a species of arboreal leguminous that occurs spontaneously in the northeastern states of Brazil. Leguminous seeds represent an abundant source of peptidase inhibitors, which play an important role in controlling peptidases involved in essential biological processes. The aim of this study was to purify and characterize a novel Kunitz-type peptidase inhibitor from Erythrina velutina seeds and evaluate its anti-proliferative effects against cancer cell lines. The Kunitz-type chymotrypsin inhibitor was purified from Erythrina velutina seeds (EvCI) by ammonium sulphate fractionation, trypsin- and chymotrypsin-sepharose affinity chromatographies and Resource Q anion-exchange column. The purified EvCI has a molecular mass of 18 kDa with homology to a Kunitz-type inhibitor. Inhibition assays revealed that EvCI is a competitive inhibitor of chymotrypsin (with K i of 4 × 10-8 M), with weak inhibitory activity against human elastase and without inhibition against trypsin, elastase, bromelain or papain. In addition, the inhibitory activity of EvCI was stable over a wide range of pH and temperature. Disulfide bridges are involved in stabilization of the reactive site in EvCI, since the reduction of disulfide bridges with DTT 100 mM abolished ~ 50% of its inhibitory activity. The inhibitor exhibited selective anti-proliferative properties against HeLa cells. The incubation of EvCI with HeLa cells triggered arrest in the cell cycle, suggesting that apoptosis is the mechanism of death induced by the inhibitor. EvCI constitutes an interesting anti-carcinogenic candidate for conventional cervical cancer treatments employed currently. The EvCI cytostatic effect on Hela cells indicates a promised compound to be used as anti-carcinogenic complement for conventional cervical treatments employed currently.
Collapse
Affiliation(s)
- Sheyla V. Lucena
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil ,Instituto Federal de Ciências e Tecnologia de Mato Grosso-IFMT, Cuiabá, MT Brazil
| | - Fabíola P. Rufino
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | | | - Luciana M. A. Rabêlo
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | - Norberto K. V. Monteiro
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | - André T. Ferreira
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | - Jonas E. Aguilar Perales
- Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, do Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro, RJ Brazil
| | - Adriana F. Uchôa
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil ,Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP Brazil ,Laboratório de Proteômica, Instituto de Medicina Tropical do Rio Grande do Norte, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | - Giselle Z. Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP Brazil ,Departamento de Ciências Biológicas, UNIFESP, Diadema, SP Brazil
| | - Caio F. R. de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900 Brazil
| | - Ludovico Migliolo
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil ,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré, 6000, Campo Grande, MS 79117-900 Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Elizeu A. Santos
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil ,Laboratório de Proteômica, Instituto de Medicina Tropical do Rio Grande do Norte, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | - Adeliana S. Oliveira
- Laboratório de Química e Função de Proteínas Bioativas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| |
Collapse
|
7
|
Herwade AP, Kasar SS, Rane NR, Ahmed S, Maras JS, Pawar PK. Characterization of a Bowman-Birk type trypsin inhibitor purified from seeds of Solanum surattense. Sci Rep 2021; 11:8648. [PMID: 33883624 PMCID: PMC8060351 DOI: 10.1038/s41598-021-87980-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
A Bowman-Birk type trypsin inhibitor protein (SSTI) from seeds of the medicinal plant Solanum surattense was isolated, purified and characterized. SSTI showed a single band on SDS-PAGE corresponding to 11.4 kDa molecular weight. It is a glycoprotein (2.8% glycosylation) that differentially interacted with trypsin and chymotrypsin in a concentration-dependent manner. Its peptide sequence is similar to other Bowman-Birk type protease inhibitors found in Glycine max and Phaseolus acutifolius. The inhibitory activity was stable over a wide range of pH (1-10) and temperatures (10-100° C). Far-UV Circular Dichroism (CD) studies showed that SSTI contains β sheets (~ 23%) and α helix (~ 6%) and demonstrated structural stability at wide pH and high temperature. The kinetic analysis revealed a noncompetitive (mixed) type nature of SSTI and low inhibitor constant (Ki) values (16.6 × 10-8 M) suggested strong inhibitory activity. Isothermal titration calorimetric analysis revealed its high affinity towards trypsin with dissociation constant (Kd) 2.28 µM.
Collapse
Affiliation(s)
- Abhijeet P Herwade
- Department of Biotechnology, Shivaji University, Kolhapur, MS, 416004, India
| | - Sainath S Kasar
- Department of Biotechnology, Shivaji University, Kolhapur, MS, 416004, India
- Department of Biochemistry, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS, 425001, India
| | - Niraj R Rane
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Shadab Ahmed
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Science, New Delhi, 110070, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur, MS, 416004, India.
| |
Collapse
|
8
|
Nunes NN, Ferreira RS, de Sá LF, de Oliveira AEA, Oliva MLV. A novel cysteine proteinase inhibitor from seeds of Enterolobium contortisiliquum and its effect on Callosobruchus maculatus larvae. Biochem Biophys Rep 2021; 25:100876. [PMID: 33364447 PMCID: PMC7750491 DOI: 10.1016/j.bbrep.2020.100876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022] Open
Abstract
This study focused on the characterization of a novel cysteine proteinase inhibitor from Enterolobium contortisiliquum seeds targeting the inhibition of the growth of Callosobruchus maculatus larvae, an important cosmopolitan pest of the cowpea Vigna unguiculata during storage. The inhibitor was isolated by ion-exchange besides of size exclusion chromatography. EcCI molecular mass is 19,757 Da, composed of two polypeptide chains. It strongly inhibits papain (Kiapp 0.036 nM) and proteinases from the midguts of C. maculatus (80 μg mL-1, 60% inhibition). The inhibitory activity is reduced by 40% after a heat treatment at 100 °C for 2 h. The protein displayed noxious activity at 0.5% and 1% (w/w) when incorporated in artificial seeds, reducing larval mass in 87% and 92%, respectively. Treatment of C. maculatus larvae with conjugated EcCI-FIT and subsequent biodistribution resulted in high fluorescence intensity in midguts and markedly low intensity in malpighian tubules and fat body. Small amounts of labeled proteins were detected in larvae feces. The detection of high fluorescence in larvae midguts and low fluorescence in their feces indicate the retention of the FITC conjugated EcCI inhibitor in larvae midguts. These results demonstrate the potential of the natural protein from E. contortisiliquum to inhibit the development of C. maculatus.
Collapse
Affiliation(s)
- Natalia N.S. Nunes
- Biochemistry Department, Universidade Federal de São Paulo-UNIFESP, 04044-020, São Paulo, SP, Brazil
| | - Rodrigo S. Ferreira
- Biochemistry Department, Universidade Federal de São Paulo-UNIFESP, 04044-020, São Paulo, SP, Brazil
| | - Leonardo F.R. de Sá
- Chemistry Laboratory on Chemistry and Function of Proteins and Peptides, Biosciences and Biotechnology Center, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro -UENF, Campos dos Goytacazes, RJ, Brazil
| | - Antônia Elenir A. de Oliveira
- Chemistry Laboratory on Chemistry and Function of Proteins and Peptides, Biosciences and Biotechnology Center, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro -UENF, Campos dos Goytacazes, RJ, Brazil
| | - Maria Luiza V. Oliva
- Biochemistry Department, Universidade Federal de São Paulo-UNIFESP, 04044-020, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Parthiban E, Arokiyaraj C, Janarthanan S, Ramanibai R. Purification, characterization of mosquito larvicidal lectin from Annona muricata and its eco-toxic effect on non-target organism. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Production of a biopesticide on host and Non-Host serine protease inhibitors for red palm weevil in palm trees. Saudi J Biol Sci 2020; 27:2803-2808. [PMID: 32994740 PMCID: PMC7499379 DOI: 10.1016/j.sjbs.2020.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Serine proteases are essential metabolic enzymes in the midgut of many pests, including the red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, which has a significant impact economically, environmentally and socially worldwide especially in the middle east. Some methods have been used to manage this pest such as trapping of RPW with pheromones, chemicals, and X-rays. However, these methods are costly, not effective and negatively impact the human. The main objective of this study is to contribute to the discovery of an eco-friendly pesticide to eradicate this infection by using serine protease inhibitors (SPIs) extracted from different parts of plant resources. In this research, both in vitro and in vivo effects of SPIs activity against RPW were examined. The protease inhibitors (PIs) activity was recorded in the crude extract that was isolated from the date’s kernel (DKE), host and Calotropis latex (CLE), non-host. These PIs were partially purified by ammonium sulfate precipitation. The midgut tissue of RPW was extracted and analyzed for protases activity assay. PIs assays were consistent with the increased in the inhibitory activity against the midgut proteases after treatment with a DKE and CLE. The reduction of gut proteases by DKE solution and CLE was 39%, 18%, respectively. Partially purified DKE showed the most prominent inhibition pattern of protease activity of the gut extract. While, latex exhibited acute toxicity, imparting the least LC50 (5.132 mg/mL) against RPW larvae. Taken together, these findings provide evidence for the hypothesis that SPIs activity may play an important role in enhancing the mortality of RPW and relieving the toxicity of insecticide in palm trees.
Collapse
|
11
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
12
|
Samiksha, Singh D, Kesavan AK, Sohal SK. Exploration of anti-insect potential of trypsin inhibitor purified from seeds of Sapindus mukorossi against Bactrocera cucurbitae. Sci Rep 2019; 9:17025. [PMID: 31745144 PMCID: PMC6863899 DOI: 10.1038/s41598-019-53495-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/23/2019] [Indexed: 11/11/2022] Open
Abstract
Peptidase inhibitors (PIs) are defense proteins of plants which are active against gut peptidases of different insects. Sapindus mukorossi was identified as a source of bioactive PIs which could confer resistance against Bactrocera cucurbitae, a most devastating pest of several economically important crops. In the present study, a trypsin inhibitor was purified from mature dry seeds of S. mukorossi and characterized for its biochemical properties as well as its potential for bio control of B. cucurbitae. The purified fractions from RP- HPLC through SDS-PAGE gave an apparent molecular weight of ~29 kDa. S. mukorossi trypsin inhibitor (SMTI) was found to be a non-competitive inhibitor which was active over a broad range of temperature (10–100 °C) and pH (6–11). SMTI when incorporated in artificial diet inhibited the growth and development of B. cucurbitae larvae. Gene expression analysis of trypsin and chymotrypsin genes via qRT-PCR indicated that their mRNA expression was down-regulated while that of other genes namely, Catalase, Elastase, Superoxide Dismutase, Glutathione –S-transferase and Alkaline Phosphatase was up regulated. SMTI also showed deleterious effects against different bacterial strains. The results of this study indicated that S. mukorossi trypsin inhibitor has potential to be used as a bio control agent that can reduce the harm caused by melon fruit fly and other devastating pests.
Collapse
Affiliation(s)
- Samiksha
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Drishtant Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Anup Kumar Kesavan
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India.
| |
Collapse
|
13
|
The geographical and seasonal mosaic in a plant-herbivore interaction: patterns of defences and herbivory by a specialist and a non-specialist. Sci Rep 2019; 9:15206. [PMID: 31645656 PMCID: PMC6811555 DOI: 10.1038/s41598-019-51528-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022] Open
Abstract
In order to evaluate the geographic mosaic theory of coevolution, it is crucial to investigate geographical variation on the outcome of ecological interactions and the functional traits which dictate these outcomes. Plant populations are attacked by specialist and non-specialist herbivores and may have different types of chemical and biotic defences. We investigated geographical and seasonal variation in the interaction between the plant Crotalaria pallida and its two major herbivores (the specialist Utetheisa ornatrix and the non-specialist Etiella zinckenella). We first showed that attack by the two herbivores and a chemical and a biotic defence vary greatly in time and space. Second, we performed a common garden experiment that revealed genetic variation among populations in herbivore resistance and a chemical defence, but no genetic variation in a biotic defence. Third, we sampled 20 populations on a much larger geographical scale and showed great variation in attack rates by the two herbivores and a chemical defence. Finally, we showed that herbivory is not correlated with a chemical defence in the 20 field populations. Our study shows that to understand the evolution of ecological interactions it is crucial to investigate how the outcome of the interaction and the important species traits vary geographically and seasonally.
Collapse
|
14
|
Martins TF, Vasconcelos IM, Silva RGG, Silva FDA, Souza PFN, Varela ALN, Albuquerque LM, Oliveira JTA. A Bowman-Birk Inhibitor from the Seeds of Luetzelburgia auriculata Inhibits Staphylococcus aureus Growth by Promoting Severe Cell Membrane Damage. JOURNAL OF NATURAL PRODUCTS 2018; 81:1497-1507. [PMID: 29927595 DOI: 10.1021/acs.jnatprod.7b00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Staphylococcus aureus is a multidrug-resistant bacterium responsible for several cases of hospital-acquired infections, which constitute a global public health problem. The introduction of new healthcare strategies and/or the discovery of molecules capable of inhibiting the growth or killing S. aureus would have a huge impact on the treatment of S. aureus-mediated diseases. Herein, a Bowman-Birk protease inhibitor ( LzaBBI), with strong in vitro antibacterial activity against S. aureus, was purified to homogeneity from Luetzelburgia auriculata seeds. LzaBBI in its native form is a 14.3 kDa protein and has a pI of 4.54, and its NH2-terminal sequence has high identity with other Bowman-Birk inhibitors. LzaBBI showed a mixed-type inhibitory activity against both trypsin and chymotrypsin, respectively, and it remained stable after both boiling at 98 °C for 120 min and incubation at various pHs. Scanning electron microscopy revealed that LzaBBI disrupted the S. aureus membrane integrity, leading to bacterial death. This study suggests that LzaBBI is a powerful candidate for developing a new antimicrobial to overcome drug resistance toward reducing hospital-acquired infections caused by S. aureus.
Collapse
Affiliation(s)
- Thiago F Martins
- Laboratory of Plant Defense, Department of Biochemistry and Molecular Biology , Federal University of Ceara (UFC) , Avenida Mister Hull , 60451-970 , Fortaleza , Ceara , Brazil
| | - Ilka M Vasconcelos
- Laboratory of Plant Defense, Department of Biochemistry and Molecular Biology , Federal University of Ceara (UFC) , Avenida Mister Hull , 60451-970 , Fortaleza , Ceara , Brazil
| | - Rodolpho G G Silva
- Laboratory of Plant Defense, Department of Biochemistry and Molecular Biology , Federal University of Ceara (UFC) , Avenida Mister Hull , 60451-970 , Fortaleza , Ceara , Brazil
| | - Fredy D A Silva
- Laboratory of Plant Defense, Department of Biochemistry and Molecular Biology , Federal University of Ceara (UFC) , Avenida Mister Hull , 60451-970 , Fortaleza , Ceara , Brazil
| | - Pedro F N Souza
- Laboratory of Plant Defense, Department of Biochemistry and Molecular Biology , Federal University of Ceara (UFC) , Avenida Mister Hull , 60451-970 , Fortaleza , Ceara , Brazil
| | - Anna L N Varela
- Laboratory of Plant Defense, Department of Biochemistry and Molecular Biology , Federal University of Ceara (UFC) , Avenida Mister Hull , 60451-970 , Fortaleza , Ceara , Brazil
| | - Louise M Albuquerque
- Laboratory of Plant Defense, Department of Biochemistry and Molecular Biology , Federal University of Ceara (UFC) , Avenida Mister Hull , 60451-970 , Fortaleza , Ceara , Brazil
| | - Jose T A Oliveira
- Laboratory of Plant Defense, Department of Biochemistry and Molecular Biology , Federal University of Ceara (UFC) , Avenida Mister Hull , 60451-970 , Fortaleza , Ceara , Brazil
| |
Collapse
|
15
|
Navaei-Bonab R, Kazzazi M, Saber M, Vatanparast M. Differential Inhibition of Helicoverpa armigera (Lep.: Noctuidae) Gut Digestive Trypsin by Extracted and Purified Inhibitor of Datura metel (Solanales: Solanaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:178-186. [PMID: 29240906 DOI: 10.1093/jee/tox209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The cotton bollworm, Helicoverpa armigera Hubner (Lep: Noctuidae), is an economically important pest of numerous major food crops worldwide. Protease inhibitors from plants, expressed constitutively in transgenic crops, have potential for pest management as an alternative to chemical pesticides. In this study, a protease inhibitor was isolated, purified, and characterized from Datura metel L. seeds. The purity of the isolated inhibitor was confirmed by reverse-phase high-performance liquid chromatography, and activity staining showed one major peak and one clear activity band for the protein. Electrophoretic studies following gel filtration and ion-exchange chromatography revealed two and one bands for purified proteins, respectively. Partial biochemical characterizations of the purified inhibitor were determined. Maximum inhibitory activity was observed at 40-45°C (optimal temperature) when tested against gut extracts of fourth to sixth instar H. armigera larvae. Thermo-stability of the trypsin inhibitor against sixth instar larval midgut trypsin was observed up to 50°C when incubated for 30 min and 2 h. Among metal ions tested, Fe2+, Cu2+, and Mn2+ were found to decrease the trypsin inhibitory activity, whereas Hg2+, Mg2+, K+, Zn2+, Na+, Ca2+, and Cd2+ were found to significantly increase the inhibitory effect. This trypsin inhibitor showed competitive inhibition where the apparent value of Michaelis-Menten Km increased, but the value of Vmax remained unchanged.
Collapse
Affiliation(s)
- Reza Navaei-Bonab
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, I. R. Iran
| | - Majid Kazzazi
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, I. R. Iran
| | - Moosa Saber
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, I. R. Iran
| | - Mohammad Vatanparast
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, I. R. Iran
| |
Collapse
|
16
|
Purification and antiparasitic activity of a few legume serine proteinase inhibitors: Effect on erythrocyte invasion, schizont rupture and proteolytic processing of the Plasmodium falciparum AMA1 protein. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Oliveira de Lima VC, de Araújo Machado RJ, Vieira Monteiro NK, de Lyra IL, da Silva Camillo C, Coelho Serquiz A, Silva de Oliveira A, da Silva Rufino FP, Leal Lima Maciel B, Ferreira Uchôa A, Antunes dos Santos E, de Araújo Morais AH. Gastroprotective and antielastase effects of protein inhibitors from Erythrina velutina seeds in an experimental ulcer model. Biochem Cell Biol 2017; 95:243-250. [DOI: 10.1139/bcb-2016-0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypsin and chymotrypsin inhibitors from Erythrina velutina seeds have been previously isolated by our group. In previous studies using a sepsis model, we demonstrated the antitumor and anti-inflammatory action of these compounds. This study aimed to evaluate the gastroprotective and antielastase effects of protein inhibitors from E. velutina seeds in an experimental stress-induced ulcer model. Two protein isolates from E. velutina seeds, with antitrypsin (PIAT) and antichymotrypsin (PIAQ) activities, were tested. Both protein isolates showed a high affinity and inhibitory effect against human neutrophil elastase, with 84% and 85% inhibition, respectively. Gastric ulcer was induced using ethanol (99%) in 6 groups of animals (female Wistar rats, n = 6). Before ulcer induction, these animals were treated for 5 days with one of the following: (1) PIAT (0.2 mg·kg−1), (2) PIAT (0.4 mg·kg−1), (3) PIAQ (0.035 mg·kg−1), (4) ranitidine hydrochloride (50 mg·kg−1), (5) saline solution (0.9%), or (6) no intervention (sham). Both PIAT and PIAQ protected gastric mucosa, preventing hemorrhagic lesions, edema, and mucus loss. No histologic toxic effects of PIAT or PIAQ were seen in liver and pancreatic cells. Our results show that protein isolates from E. velutina seeds have potential gastroprotective effects, placing these compounds as natural candidates for gastric ulcer prevention.
Collapse
Affiliation(s)
| | | | | | - Ibson Lucas de Lyra
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Christina da Silva Camillo
- Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Alexandre Coelho Serquiz
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Adeliana Silva de Oliveira
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | | | - Bruna Leal Lima Maciel
- Nutrition Department Center for Health Sciences, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Adriana Ferreira Uchôa
- Molecular Biology and Genetics Department, Center for Health Sciences, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Elizeu Antunes dos Santos
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | | |
Collapse
|
18
|
Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom. Chin J Nat Med 2017; 14:607-14. [PMID: 27608950 DOI: 10.1016/s1875-5364(16)30071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 02/08/2023]
Abstract
It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival.
Collapse
|
19
|
Wielkopolan B, Obrępalska-Stęplowska A. Three-way interaction among plants, bacteria, and coleopteran insects. PLANTA 2016; 244:313-32. [PMID: 27170360 PMCID: PMC4938854 DOI: 10.1007/s00425-016-2543-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/30/2016] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.
Collapse
Affiliation(s)
- Beata Wielkopolan
- Department of Agrophages' Forecasting Methods and Agricultural Economic, Institute of Plant Protection, National Research Institute, Poznan, Poland
| | | |
Collapse
|
20
|
Serquiz AC, Machado RJA, Serquiz RP, Lima VCO, de Carvalho FMC, Carneiro MAA, Maciel BLL, Uchôa AF, Santos EA, Morais AHA. Supplementation with a new trypsin inhibitor from peanut is associated with reduced fasting glucose, weight control, and increased plasma CCK secretion in an animal model. J Enzyme Inhib Med Chem 2016; 31:1261-9. [DOI: 10.3109/14756366.2015.1103236] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandre C. Serquiz
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil,
| | - Richele J. A. Machado
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil,
| | - Raphael P. Serquiz
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil,
| | - Vanessa C. O. Lima
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil,
| | - Fabiana Maria C. de Carvalho
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Marcella A. A. Carneiro
- Course of Biological Sciences, Faculty of Science and Culture Extension of Rio Grande Do Norte, Natal, RN, Brazil,
| | - Bruna L. L. Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil, and
| | - Adriana F. Uchôa
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil,
| | - Elizeu A. Santos
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil,
| | - Ana H. A. Morais
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil, and
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| |
Collapse
|
21
|
Katoch R, Sharma K, Singh SK, Thakur N. Evaluation and characterization of trypsin inhibitor from rice bean with inhibitory activity against gut proteases of Spodoptera litura. Z NATURFORSCH C 2015; 70:287-95. [PMID: 26618568 DOI: 10.1515/znc-2015-5029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/09/2015] [Indexed: 11/15/2022]
Abstract
Trypsin inhibitor (TI) in rice bean (Vigna umbellata) varied spatio-temporally in different parts of the plant, with the highest level (30.9 mg/g d.w.) noted in the maturing seeds of genotype BRS-2 at 160 days after planting (DAP). The TI from rice bean seeds was isolated and purified approximately 182-fold, with a final yield of 29% using ammonium sulfate precipitation, ion exchange chromatography through DEAE-Sepharose, gel permeation through Superdex-75, and finally by affinity chromatography using a trypsin-Sepharose column. The purified TI showed a single band on SDS-PAGE under reducing conditions with an apparent molecular mass of 24 kDa. The highest activity of purified inhibitor (about 90%) was recorded at pH 4.0 at 37 °C, suggesting the stability of the inhibitor under acidic conditions. The TI exhibited an inhibitory effect against Spodoptera litura larvae. A progressive decline in larval weight, growth, and survival rate of larval development was observed after feeding S. litura larvae on a diet supplemented with increasing concentrations of rice bean TI. The highest TI content in the seeds nearing maturity correlates to the role of TIs in protecting against insect pests. The study clarifies the role of rice bean protease inhibitors as a potential strategy against insectpests of economic importance.
Collapse
|
22
|
Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore. PLoS One 2015; 10:e0141480. [PMID: 26517873 PMCID: PMC4627748 DOI: 10.1371/journal.pone.0141480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense.
Collapse
|
23
|
Lyu J, Liu Y, An T, Liu Y, Wang M, Song Y, Zheng F, Wu D, Zhang Y, Deng S. Purification and characterization of a trypsin inhibitor from the seeds of Artocarpus heterophyllus Lam. Acta Biochim Biophys Sin (Shanghai) 2015; 47:376-82. [PMID: 25851516 DOI: 10.1093/abbs/gmv022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/02/2015] [Indexed: 01/30/2023] Open
Abstract
A proteinaceous inhibitor against trypsin was isolated from the seeds of Artocarpus heterophyllus Lam. by successive ammonium sulfate precipitation, ion-exchange, and gel-filtration chromatography. The trypsin inhibitor, named as AHLTI (A. heterophyllus Lam. trypsin inhibitor), consisted of a single polypeptide chain with a molecular weight of 28.5 kDa, which was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel-filtration chromatography. The N-terminal sequence of AHLTI was DEPPSELDAS, which showed no similarity to other known trypsin inhibitor sequence. AHLTI completely inhibited bovine trypsin at a molar ratio of 1:2 (AHLTI:trypsin) analyzed by native polyacrylamide gel electrophoresis, inhibition activity assay, and gel-filtration chromatography. Moreover, kinetic enzymatic studies were carried out to understand the inhibition mechanism of AHLTI against trypsin. Results showed that AHLTI was a competitive inhibitor with an equilibrium dissociation constant (Ki) of 3.7 × 10(-8) M. However, AHLTI showed weak inhibitory activity toward chymotrypsin and elastase. AHLTI was stable over a broad range of pH 4-8 and temperature 20-80°C. The reduction agent, dithiothreitol, had no obvious effect on AHLTI. The trypsin inhibition assays of AHLTI toward digestive enzymes from insect pest guts in vitro demonstrated that AHLTI was effective against enzymes from Locusta migratoria manilensis (Meyen). These results suggested that AHLTI might be a novel trypsin inhibitor from A. heterophyllus Lam. belonging to Kunitz family, and play an important role in protecting from insect pest.
Collapse
Affiliation(s)
- Junchen Lyu
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yuan Liu
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Tianchen An
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yujun Liu
- School of Life Science, Jilin Normal University, Siping 136000, China
| | - Manchuriga Wang
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yanting Song
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Feifei Zheng
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Dan Wu
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yingxia Zhang
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Shiming Deng
- Key Laboratory of Tropic Biological Resources, Minister of Education, College of Marine Science, Hainan University, Haikou 570228, China
| |
Collapse
|
24
|
Oddepally R, Sriram G, Guruprasad L. Purification and characterization of a stable Kunitz trypsin inhibitor from Trigonella foenum-graecum (fenugreek) seeds. PHYTOCHEMISTRY 2013; 96:26-36. [PMID: 24094275 DOI: 10.1016/j.phytochem.2013.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Kunitz trypsin inhibitor was purified from the seeds of Trigonella foenum-graecum (TfgKTI) belonging to fabaceae family by ammonium sulphate precipitation, cation exchange, gel filtration and hydrophobic chromatography. Purity of the protein was analyzed by RP-HPLC and native-PAGE. SDS-PAGE analysis under reducing and non-reducing conditions showed that protein consists of a single polypeptide chain with molecular mass of approximately 20 kDa. Mass spectroscopy analysis revealed that the intact mass of purified inhibitor is 19,842.154 Da. One dimensional SDS gel was tryptically digested, resulting peptides were subjected to MALDI-TOF-MS analysis, and peptide mass fingerprinting (PMF) analysis of TfgKTI shows sequence similarity with Kunitz trypsin inhibitor in database search. Two dimensional electrophoresis identified presence of four isoinhibitors (pI values of 5.1, 5.4, 5.7 and 6.1). Kinetic studies showed that the protein is a competitive inhibitor and has high binding affinity with trypsin (Ki 3.01×10(-9)M) and chymotrypsin (Ki 0.52×10(-9)M). The TfgKTI retained the inhibitory activity over a broad range of pH (pH 3-10), temperature (37-100°C) and salt concentration (up to 3.5%). Far-UV circular dichroism measurements revealed that TfgKTI is predominantly composed of β-sheets (39%) and unordered structures (48%) with slight helical content (13%). TfgKTI retained over 90% trypsin inhibition upon storage at 4°C for over a period of six months.
Collapse
|
25
|
Cruz ACB, Massena FS, Migliolo L, Macedo LLP, Monteiro NKV, Oliveira AS, Macedo FP, Uchoa AF, Grossi de Sá MF, Vasconcelos IM, Murad AM, Franco OL, Santos EA. Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:61-68. [PMID: 23770595 DOI: 10.1016/j.plaphy.2013.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
The present study aims to provide new in vitro and in vivo biochemical information about a novel Kunitz trypsin inhibitor purified from Piptadenia moniliformis seeds. The purification process was performed using TCA precipitation, Trypsin-Sepharose and reversed-phase C18 HPLC chromatography. The inhibitor, named PmTKI, showed an apparent molecular mass of around 19 kDa, visualized by SDS-PAGE, which was confirmed by mass spectrometry MALDI-ToF demonstrating a monoisotopic mass of 19.296 Da. The inhibitor was in vitro active against trypsin, chymotrypsin and papain. Moreover, kinetic enzymatic studies were performed aiming to understand the inhibition mode of PmTKI, which competitively inhibits the target enzyme, presenting Ki values of 1.5 × 10(-8) and 3.0 × 10(-1) M against trypsin and chymotrypsin, respectively. Also, the inhibitory activity was assayed at different pH ranges, temperatures and reduction environments (DTT). The inhibitor was stable in all conditions maintaining an 80% residual activity. N-terminal sequence was obtained by Edman degradation and the primary sequence presented identity with members of Kunitz-type inhibitors from the same subfamily. Finally after biochemical characterization the inhibitory effect was evaluated in vitro on insect digestive enzymes from different orders, PmTKI demonstrated remarkable activity against enzymes from Anthonomus grandis (90%), Plodia interpuncptella (60%), and Ceratitis capitata (70%). Furthermore, in vivo bioinsecticidal assays of C. capitata larvae were also performed and the concentration of PmTKI (w/w) in an artificial diet required to LD50 and ED50 larvae were 0.37 and 0.3% respectively. In summary, data reported here shown the biotechnological potential of PmTKI for insect pest control.
Collapse
Affiliation(s)
- Ana C B Cruz
- Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ramos M, Araújo E, Jucá T, Monteiro-Moreira A, Vasconcelos I, Moreira R, Viana C, Beltramini L, Pereira D, Moreno F. New insights into the complex mixture of latex cysteine peptidases in Calotropis procera. Int J Biol Macromol 2013; 58:211-9. [DOI: 10.1016/j.ijbiomac.2013.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 11/27/2022]
|
27
|
Machado RJA, Monteiro NKV, Migliolo L, Silva ON, Pinto MFS, Oliveira AS, Franco OL, Kiyota S, Bemquerer MP, Uchoa AF, Morais AHA, Santos EA. Characterization and pharmacological properties of a novel multifunctional Kunitz inhibitor from Erythrina velutina seeds. PLoS One 2013; 8:e63571. [PMID: 23737945 PMCID: PMC3666885 DOI: 10.1371/journal.pone.0063571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
Inhibitors of peptidases isolated from leguminous seeds have been studied for their pharmacological properties. The present study focused on purification, biochemical characterization and anti-inflammatory and anticoagulant evaluation of a novel Kunitz trypsin inhibitor from Erythrina velutina seeds (EvTI). Trypsin inhibitors were purified by ammonium sulfate (30-60%), fractionation followed by Trypsin-Sepharose affinity chromatography and reversed-phase high performance liquid chromatography. The purified inhibitor showed molecular mass of 19,210.48 Da. Furthermore, a second isoform with 19,228.16 Da was also observed. The inhibitor that showed highest trypsin specificity and enhanced recovery yield was named EvTI (P2) and was selected for further analysis. The EvTI peptide fragments, generated by trypsin and pepsin digestion, were further analyzed by MALDI-ToF-ToF mass spectrometry, allowing a partial primary structure elucidation. EvTI exhibited inhibitory activity against trypsin with IC50 of 2.2×10(-8) mol.L(-1) and constant inhibition (Ki) of 1.0×10(-8) mol.L(-1), by a non-competitive mechanism. In addition to inhibit the activity of trypsin, EvTI also inhibited factor Xa and neutrophil elastase, but do not inhibit thrombin, chymotrypsin or peptidase 3. EvTI was investigated for its anti-inflammatory and anti-coagulant properties. Firstly, EvTI showed no cytotoxic effect on human peripheral blood cells. Nevertheless, the inhibitor was able to prolong the clotting time in a dose-dependent manner by using in vitro and in vivo models. Due to anti-inflammatory and anticoagulant EvTI properties, two sepsis models were here challenged. EvTI inhibited leukocyte migration and specifically acted by inhibiting TNF-α release and stimulating IFN-α and IL-12 synthesis. The data presented clearly contribute to a better understanding of the use of Kunitz inhibitors in sepsis as a bioactive agent capable of interfering in blood coagulation and inflammation.
Collapse
Affiliation(s)
- Richele J. A. Machado
- Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Norberto K. V. Monteiro
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Ludovico Migliolo
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Gênomicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brasil
| | - Osmar N. Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Gênomicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brasil
| | - Michele F. S. Pinto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Gênomicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brasil
| | - Adeliana S. Oliveira
- Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Gênomicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brasil
| | - Sumika Kiyota
- Laboratório de Bioquímica de Proteínas e Peptídeos, Centro de Pesquisa e Desenvolvimento de Sanidade Animal, Instituto Biológico, São Paulo, Brasil
| | - Marcelo P. Bemquerer
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brasil
| | - Adriana F. Uchoa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Ana H. A. Morais
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Elizeu A. Santos
- Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| |
Collapse
|
28
|
F. Ribeiro SF, S. Fernandes KV, Santos IS, Taveira GB, Carvalho AO, Lopes JLS, Beltramini LM, Rodrigues R, Vasconcelos IM, Da Cunha M, Souza-Filho GA, Gomes VM. New small proteinase inhibitors fromCapsicum annuumseeds: Characterization, stability, spectroscopic analysis and a cDNA cloning. Biopolymers 2013; 100:132-40. [DOI: 10.1002/bip.22172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Suzanna F. F. Ribeiro
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| | - Kátia V. S. Fernandes
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| | - Izabela S. Santos
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| | - Gabriel B. Taveira
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| | - André O. Carvalho
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| | - José Luiz S. Lopes
- Instituto de Física de São Carlos; Grupo de Biofísica Molecular; Universidade de São Paulo; 13560-970; São Paulo; Brazil
| | - Leila M. Beltramini
- Instituto de Física de São Carlos; Grupo de Biofísica Molecular; Universidade de São Paulo; 13560-970; São Paulo; Brazil
| | - Rosana Rodrigues
- Centro de Ciências e Tecnologias Agropecuárias; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| | - Ilka M. Vasconcelos
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Ceará; Fortaleza; Ceará; Brazil
| | - Maura Da Cunha
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| | - Gonçalo A. Souza-Filho
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| | - Valdirene M. Gomes
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602; Rio de Janeiro; Brazil
| |
Collapse
|
29
|
Chen Z, Wang B, Hu J, Yang W, Cao Z, Zhuo R, Li W, Wu Y. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms. PLoS One 2013; 8:e57529. [PMID: 23533574 PMCID: PMC3606364 DOI: 10.1371/journal.pone.0057529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/22/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI), Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2), Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI), and Buthus martensii Ascaris-type protease inhibitor (BmAPI). The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the development of diagnostic and therapeutic agents for human diseases that target diverse proteases.
Collapse
Affiliation(s)
- Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, China
| | - Bin Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (WXL); (YLW)
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (WXL); (YLW)
| |
Collapse
|
30
|
Rufino FPS, Pedroso VMA, Araujo JN, França AFJ, Rabêlo LMA, Migliolo L, Kiyota S, Santos EA, Franco OL, Oliveira AS. Inhibitory effects of a Kunitz-type inhibitor from Pithecellobium dumosum (Benth) seeds against insect-pests' digestive proteinases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:70-6. [PMID: 23238511 DOI: 10.1016/j.plaphy.2012.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/19/2012] [Indexed: 05/13/2023]
Abstract
Pithecellobium dumosum is a tree belonging to the Mimosoideae subfamily that presents various previously characterized Kunitz-type inhibitors. The present study provides a novel Kunitz-trypsin inhibitor isoform purified from P. dumosum seeds. Purification procedure was performed by TCA precipitation followed by a trypsin-Sepharose chromatography and a further reversed-phase HPLC. Purified inhibitor (PdKI-4) showed enhanced inhibitory activity against bovine trypsin and chymotrypsin. Furthermore, PdKI-4 showed remarkable inhibitory activity against serine proteases from the coleopterans Callosobruchus maculatus and Zabrotes subfasciatus, and the lepidopterans Alabama argillacea and Telchin licus. However, PdKI-4 was unable to inhibit porcine pancreatic elastase, pineapple bromelain and Carica papaya papain. SDS-PAGE showed that PdKI-4 consisted of a single polypeptide chain with molecular mass of 21 kDa. Kinetic studies demonstrated that PdKI-4 is probably a competitive inhibitor with a Ki value of 5.7 × 10(-10) M for bovine trypsin. PdKI-4 also showed higher stability over a wide range of temperature (37-100 °C) and pH (2-12). N-termini sequence was obtained by Edman degradation showing higher identity with other Mimosoideae subfamily Kunitz-type inhibitor members. In summary, data here reported indicate the biotechnological potential of PdKI-4 for development of products against insect-pests.
Collapse
|
31
|
Ramos VDS, Cabrera OG, Camargo ELO, Ambrósio AB, Vidal RO, da Silva DS, Guimarães LC, Marangoni S, Parra JRP, Pereira GAG, Macedo MLR. Molecular cloning and insecticidal effect of Inga laurina trypsin inhibitor on Diatraea saccharalis and Heliothis virescens. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:148-58. [PMID: 22885277 DOI: 10.1016/j.cbpc.2012.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants.
Collapse
Affiliation(s)
- Vanessa da S Ramos
- Departamento de Bioquímica/Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hope-Onyekwere NS, Ogueli GI, Cortelazzo A, Cerutti H, Cito A, Aguiyi JC, Guerranti R. Effects of Mucuna pruriens protease inhibitors on Echis carinatus venom. Phytother Res 2012; 26:1913-9. [PMID: 22447581 DOI: 10.1002/ptr.4663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 02/05/2011] [Accepted: 06/02/2012] [Indexed: 11/10/2022]
Abstract
The medicinal plant Mucuna pruriens, with reputed anti-snake venom properties has been reported to contain a kunitz-type trypsin inhibitor. This study was undertaken to further evaluate the protease inhibitory potential of gpMuc, a multiform glycoprotein, and other protein fractions from M. pruriens seeds against trypsin, chymotrypsin, Echis carinatus snake venom, ecarin and thrombin. The results showed that gpMuc inhibited both trypsin and chymotrypsin activities and was thermally stable, maintaining its trypsin inhibitory activity at temperatures of up to 50°C. Its structural conformation was also maintained at pH ranges of 4-7. Immunoreactivity study confirms that it contains protease-recognizing epitope on one of its isoforms. The whole protein extract of M. pruriens seeds inhibited prothrombin activation by ecarin and whole E. carinatus venom, and also thrombin-like activity using chromogenic assay.
Collapse
Affiliation(s)
- Nnadozie Stanley Hope-Onyekwere
- Department of Internal Medicine, Endocrine-Metabolic Science and Biochemistry, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
de Paula Carli A, de Abreu Vieira PM, Silva KTS, de Sá Cota RG, Carneiro CM, Castro-Borges W, de Andrade MHG. Bowman-Birk inhibitors, proteasome peptidase activities and colorectal pre neoplasias induced by 1,2-dimethylhydrazine in Swiss mice. Food Chem Toxicol 2012; 50:1405-12. [PMID: 22326805 DOI: 10.1016/j.fct.2012.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/24/2022]
Abstract
Bowman-Birk inhibitors (BBIs) are protein molecules containing two inhibitory domains for enzymes similar to trypsin and chymotrypsin. Interest in these inhibitors arose from their properties against the cancer chemically induced by 1,2-dimethylhydrazine (DMH). In this study the effect of two BBI preparations (from Glycine max and Macrotyloma axillare) were evaluated for the prevention of colorectal neoplasia induced by intraperitoneal injections of DMH, given at a dose of 30 mg/kg, during 12 weeks. Mice treated with DMH presented histopathological alterations consistent with tumor development, augmented CD44 expression and increased proteasome peptidase activities. Lysosomal fractions, obtained from the intestines, were chromatographed in a Sepharose-BBI column and increased activity for trypsin and chymotrypsin-like proteases recovered from DMH-treated animals. In parallel, mice treated for eight weeks with BBIs showed a decrease in the chymotrypsin and trypsin-like proteasome activities compared to animals fed on normal diet. For the groups receiving simultaneous treatment with DMH and BBIs, dysplasic lesions were not observed and proteasome peptidase activities were similar to the control group after the 24th week. These results suggest that the mechanism by which BBIs could prevent the appearance of pre neoplastic lesions is associated with inhibition of both the lysosomal and proteasome-dependent proteolytic pathways.
Collapse
|
34
|
Migliolo L, de Oliveira AS, Santos EA, Franco OL, de Sales MP. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases. J Mol Graph Model 2010; 29:148-56. [DOI: 10.1016/j.jmgm.2010.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
|
35
|
Oliveira HD, Sousa DO, Oliveira JT, Carlini CR, Oliveira HP, Pereira ML, Rocha RO, Morais JK, Gomes-Filho E, Vasconcelos IM. Gm-TX, a new toxic protein from soybean (Glycine max) seeds with potential for controlling insect pests. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Calderon LA, Almeida Filho HA, Teles RCL, Medrano FJ, Bloch Jr C, Santoro MM, Freitas SM. Purification and structural stability of a trypsin inhibitor from Amazon Inga cylindrica [Vell.] Mart. seeds. ACTA ACUST UNITED AC 2010. [DOI: 10.1590/s1677-04202010000200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Freitas CDTD, Souza DPD, Araújo ES, Cavalheiro MG, Oliveira LS, Ramos MV. Anti-oxidative and proteolytic activities and protein profile of laticifer cells of Cryptostegia grandiflora, Plumeria rubra and Euphorbia tirucalli. ACTA ACUST UNITED AC 2010. [DOI: 10.1590/s1677-04202010000100002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Pelegrini PB, Farias LR, Saude ACM, Costa FT, Bloch C, Silva LP, Oliveira AS, Gomes CEM, Sales MP, Franco OL. A Novel Antimicrobial Peptide from Crotalaria pallida Seeds with Activity Against Human and Phytopathogens. Curr Microbiol 2009; 59:400-4. [DOI: 10.1007/s00284-009-9451-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 03/31/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
|
39
|
Bhattacharyya A, Babu CR. Purification and biochemical characterization of a serine proteinase inhibitor from Derris trifoliata Lour. seeds: insight into structural and antimalarial features. PHYTOCHEMISTRY 2009; 70:703-712. [PMID: 19409579 DOI: 10.1016/j.phytochem.2009.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 05/27/2023]
Abstract
A potent serine proteinase inhibitor was isolated and characterized from the seeds of the tropical legume liana, Derris trifoliata (DtTCI) by ammonium sulfate precipitation, ion exchange chromatography and gel filtration chromatography. SDS-PAGE as well as MALDI-TOF analysis showed that DtTCI is a single polypeptide chain with a molecular mass of approximately 20 kDa. DtTCI has three isoinhibitors (pI: 4.55, 5.34 and 5.72) and, inhibited both trypsin and chymotrypsin in a 1:1 molar ratio. Both Dixon plots and Lineweaver-Burk double reciprocal plots revealed a competitive inhibition of trypsin and chymotrypsin activity, with inhibition constants (K(i)) of 1.7x10(-10) and 1.25x10(-10) M, respectively. N-terminal sequence of DtTCI showed over 50% similarity with numerous Kunitz-type inhibitors of the Papilionoideae subfamily. High pH amplitude and broad temperature optima were noted for DtTCI, and time course experiments indicated a gradual loss in inhibitory potency on treatment with dithiothreitol (DTT). Circular Dichroism (CD) spectrum of native DtTCI revealed an unordered structure whereas exposure to thermal-pH extremes, DTT and guanidine hydrochloride (Gdn HCl) suggested that an abundance of beta-sheets along with intramolecular disulfide bonds provide conformational stability to the active site of DtTCI, and that severity of denaturants cause structural modifications promoting inhibitory inactivity. Antimalarial studies of DtTCI indicate it to be a potent antiparasitic agent.
Collapse
Affiliation(s)
- Arindam Bhattacharyya
- Centre for Environmental Management of Degraded Ecosystems, School of Environmental Studies, University of Delhi, Delhi, India.
| | | |
Collapse
|
40
|
Ramos VDS, Silva GDS, Freire MDGM, Machado OLT, Parra JRP, Macedo MLR. Purification and characterization of a trypsin inhibitor from Plathymenia foliolosa seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11348-11355. [PMID: 18991455 DOI: 10.1021/jf802778b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel trypsin inhibitor (PFTI) was isolated from Plathymenia foliolosa (Benth.) seeds by gel filtration chromatography on a Sephadex G-100, DEAE-Sepharose, and trypsin-Sepharose columns. By SDSPAGE, PFTI yielded a single band with a M(r) of 19 kDa. PFTI inhibited bovine trypsin and bovine chymotrypsin with equilibrium dissociation constants (K(i)) of 4 x 10(-8) and 1.4 x 10(-6) M, respectively. PFTI retained more than 50% of activity at up to 50 degrees C for 30 min, but there were 80 and 100% losses of activity at 60 and 70 degrees C, respectively. DTT affected the activity or stability of PFTI. The N-terminal amino acid sequence of PFTI showed a high degree of homology with various members of the Kunitz family of inhibitors. Anagasta kuehniella is found worldwide; this insect attacks stored grains and products of rice, oat, rye, corn, and wheat. The velvet bean caterpillar (Anticarsia gemmatalis) is considered the main defoliator pest of soybean in Brazil. Diatraea saccharalis, the sugar cane borer, is the major pest of sugar cane crops, and its caterpillar-feeding behavior, inside the stems, hampers control. PFTI showed significant inhibitory activity against trypsin-like proteases present in the larval midguts on A. kuehniella and D. saccharalis and could suppress the growth of larvae.
Collapse
|
41
|
Chaudhary NS, Shee C, Islam A, Ahmad F, Yernool D, Kumar P, Sharma AK. Purification and characterization of a trypsin inhibitor from Putranjiva roxburghii seeds. PHYTOCHEMISTRY 2008; 69:2120-2126. [PMID: 18561964 DOI: 10.1016/j.phytochem.2008.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 04/06/2008] [Accepted: 05/05/2008] [Indexed: 05/26/2023]
Abstract
A highly stable and potent trypsin inhibitor was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family by acid precipitation, cation-exchange and anion-exchange chromatography. SDS-PAGE analysis, under reducing condition, showed that protein consists of a single polypeptide chain with molecular mass of approximately 34 kDa. The purified inhibitor inhibited bovine trypsin in 1:1 molar ratio. Kinetic studies showed that the protein is a competitive inhibitor with an equilibrium dissociation constant of 1.4x10(-11) M. The inhibitor retained the inhibitory activity over a broad range of pH (pH 2-12), temperature (20-80 degrees C) and in DTT (up to100 mM). The complete loss of inhibitory activity was observed above 90 degrees C. CD studies, at increasing temperatures, demonstrated the structural stability of inhibitor at high temperatures. The polypeptide backbone folding was retained up to 80 degrees C. The CD spectra of inhibitor at room temperature exhibited an alpha, beta pattern. N-terminal amino acid sequence of 10 residues did not show any similarities to known serine proteinase inhibitors, however, two peptides obtained by internal partial sequencing showed significant resemblance to Kunitz-type inhibitors.
Collapse
Affiliation(s)
- Navneet S Chaudhary
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | | | | | | | | | | | | |
Collapse
|
42
|
Freitas CDT, Oliveira JS, Miranda MRA, Macedo NMR, Sales MP, Villas-Boas LA, Ramos MV. Enzymatic activities and protein profile of latex from Calotropis procera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:781-9. [PMID: 17888673 DOI: 10.1016/j.plaphy.2007.07.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/25/2007] [Indexed: 05/07/2023]
Abstract
The laticifer fluid of Calotropis procera is rich in proteins and there is evidence that they are involved in the pharmacological properties of the latex. However, not much is known about how the latex-containing proteins are produced or their functions. In this study, laticifer proteins of C. procera were pooled and examined by 1D and 2D electrophoresis, masses spectrometry (MALDI-TOF) and characterized in respect of proteolytic activity and oxidative enzymes. Soluble laticifer proteins were predominantly composed of basic proteins (PI>6.0) with molecular masses varying between 5 and 95 kDa. Proteins with a molecular mass of approximately 26,000 Da were more evident. Strong anti-oxidative activity of superoxide dismutase (EC 1.15.1.1) (1007.74+/-91.89 Ug(-1)DM) and, to a lesser extent ascorbate peroxidase (EC 1.11.1.1) (0.117(d)+/-0.013 microMol H(2)O(2)g(-1)min(-1)), were detected. However, catalase (EC 1.11.1.6) was absent. The strong proteolytic activities of laticifer proteins from C. procera were shown to be shared by at least four distinct cysteine proteinases (EC 3.4.22.16) that were isolated by gel filtration chromatography. Serine and metaloproteinases were not detected and aspartic proteinase activities were barely visible. Chitinases (EC 3.2.1.14) were also isolated in a chitin column and their activities quantified. The presence of these enzymatic activities in latex from C. procera may confirm their involvement in resistance to phytopathogens and insects, mainly in its leaves where the latex circulates abundantly.
Collapse
Affiliation(s)
- Cleverson Diniz T Freitas
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará CEP 60451-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Oliveira AS, Migliolo L, Aquino RO, Ribeiro JKC, Macedo LLP, Andrade LBS, Bemquerer MP, Santos EA, Kiyota S, de Sales MP. Purification and characterization of a trypsin-papain inhibitor from Pithecelobium dumosum seeds and its in vitro effects towards digestive enzymes from insect pests. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:858-65. [PMID: 17888672 DOI: 10.1016/j.plaphy.2007.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/06/2007] [Indexed: 05/17/2023]
Abstract
A novel trypsin-papain inhibitor, named PdKI-2, was purified from the seeds of Pithecelobium dumosum seeds by TCA precipitation, Trypsin-Sepharose chromatography and reversed-phase HPLC. PdKI-2 had an M(r) of 18.1 kDa as determined by SDS-PAGE and was composed of a single polypeptide chain. The inhibition on trypsin was stable at pH range 2-10, temperature of 50 degrees C and had a K(i) value of 1.65 x 10(-8)M, with a competitive inhibition mechanism. PdKI-2 was also active to papain, a cysteine proteinase, and showed a noncompetitive inhibition mechanism and K(i) value of 5.1 x 10(-7)M. PdKI-2 was effective against digestive proteinase from bruchids Zabrotes subfasciatus and Callosobruchus maculatus; Dipteran Ceratitis capitata; Lepidopterans Plodia interpunctella and Alabama argillacea, with 74.5%, 70.0%, 70.3%, 48.7%, and 13.6% inhibition, respectively. Results support that PdKI-2 is a member of Kunitz-inhibitor family and its effect on digestive enzyme larvae from diverse orders indicated this protein as a potent insect antifeedant.
Collapse
Affiliation(s)
- Adeliana S Oliveira
- Departamento Bioquímica, Laboratório de Química e Função de Proteínas, Centro de Biociências, Campus UFRN, Av. Salgado Filho s/n, 59072-970 Natal, RN, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bhattacharyya A, Rai S, Babu CR. A trypsin and chymotrypsin inhibitor from Caesalpinia bonduc seeds: isolation, partial characterization and insecticidal properties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:169-77. [PMID: 17400464 DOI: 10.1016/j.plaphy.2007.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 02/01/2007] [Indexed: 05/14/2023]
Abstract
Evolution of proteinase inhibitor diversity in leguminous plants of tropical rainforests is under immense pressure from the regular upregulation of proteolytic machinery of their pests. The present study illustrates the isolation and bioinsecticidal potency of a serine proteinase inhibitor from the seeds of Caesalpinia bonduc (CbTI), inhabiting Great Nicobar Island, India. Following initial fractionation by ammonium sulfate precipitation, CbTI was purified to homogeneity by ion exchange, gel filtration and trypsin affinity chromatography. SDS-PAGE of gel filtrated CbTI showed a couple of proteins CbTI-1 ( approximately 16kDa) and CbTI-2 (20kDa) under non-reducing conditions, which subsequent to trypsin affinity chromatography yielded only CbTI-2. Both Native PAGE as well as iso-electric focusing showed 2 iso-inhibitors of CbTI-2 (pI values of 5.35 and 4.6). CbTI exhibited tolerance to extremes of temperatures (0-60 degrees C) and pH (1-12). A 1:1 stoichiometric ratio was noted during CbTI-2-trypsin complex formation, which was absent on binding with chymotrypsin. Further, SDS-PAGE analysis also showed that CbTI-1 has affinity only towards chymotrypsin, whereas both trypsin and chymotrypsin formed complexes with CbTI-2. Dixon plot analysis of CbTI-2 yielded inhibition constants (K(i)) of 2.75 x 10(-10)M and 0.95 x 10(-10)M against trypsin and chymotrypsin activity respectively. Preliminary investigations on the toxicological nature of CbTI revealed it to be a promising bioinsecticidal candidate.
Collapse
|