1
|
Hernandez-Escribano L, Morales Clemente MT, Fariña-Flores D, Raposo R. A delayed response in phytohormone signaling and production contributes to pine susceptibility to Fusarium circinatum. BMC PLANT BIOLOGY 2024; 24:727. [PMID: 39080528 PMCID: PMC11289988 DOI: 10.1186/s12870-024-05342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Fusarium circinatum is the causal agent of pine pitch canker disease, which affects Pinus species worldwide, causing significant economic and ecological losses. In Spain, two Pinus species are most affected by the pathogen; Pinus radiata is highly susceptible, while Pinus pinaster has shown moderate resistance. In F. circinatum-Pinus interactions, phytohormones are known to play a crucial role in plant defense. By comparing species with different degrees of susceptibility, we aimed to elucidate the fundamental mechanisms underlying resistance to the pathogen. For this purpose, we used an integrative approach by combining gene expression and metabolomic phytohormone analyses at 5 and 10 days post inoculation. RESULTS Gene expression and metabolite phytohormone contents suggested that the moderate resistance of P. pinaster to F. circinatum is determined by the induction of phytohormone signaling and hormone rearrangement beginning at 5 dpi, when symptoms are still not visible. Jasmonic acid was the hormone that showed the greatest increase by 5 dpi, together with the active gibberellic acid 4 and the cytokinin dehydrozeatin; there was also an increase in abscisic acid and salicylic acid by 10 dpi. In contrast, P. radiata hormonal changes were delayed until 10 dpi, when symptoms were already visible; however, this increase was not as high as that in P. pinaster. Indeed, in P. radiata, no differences in jasmonic acid or salicylic acid production were found. Gene expression analysis supported the hormonal data, since the activation of genes related to phytohormone synthesis was observed earlier in P. pinaster than in the susceptible P. radiata. CONCLUSIONS We determine that the moderate resistance of P. pinaster to F. circinatum is in part a result of early and strong activation of plant phytohormone-based defense responses before symptoms become visible. We suggest that jasmonic acid signaling and production are strongly associated with F. circinatum resistance. In contrast, P. radiata susceptibility was attributed to a delayed response to the fungus at the moment when symptoms were visible. Our results contribute to a better understanding of the phytohormone-based defense mechanism involved in the Pinus-F. circinatum interactions and provide insight into the development of new strategies for disease mitigation.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain.
| | | | - David Fariña-Flores
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain
- Departamento de Biotecnología-Biología Vegetal, E.T.S. de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Rosa Raposo
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain.
| |
Collapse
|
2
|
How Wheat Pericarp Alter Fungal Growth and Toxigenicity Profiles. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Hernandez-Escribano L, Visser EA, Iturritxa E, Raposo R, Naidoo S. The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics 2020; 21:28. [PMID: 31914917 PMCID: PMC6950806 DOI: 10.1186/s12864-019-6444-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fusarium circinatum, the causal agent of pitch canker disease, poses a serious threat to several Pinus species affecting plantations and nurseries. Although Pinus pinaster has shown moderate resistance to F. circinatum, the molecular mechanisms of defense in this host are still unknown. Phytohormones produced by the plant and by the pathogen are known to play a crucial role in determining the outcome of plant-pathogen interactions. Therefore, the aim of this study was to determine the role of phytohormones in F. circinatum virulence, that compromise host resistance. RESULTS A high quality P. pinaster de novo transcriptome assembly was generated, represented by 24,375 sequences from which 17,593 were full length genes, and utilized to determine the expression profiles of both organisms during the infection process at 3, 5 and 10 days post-inoculation using a dual RNA-sequencing approach. The moderate resistance shown by Pinus pinaster at the early time points may be explained by the expression profiles pertaining to early recognition of the pathogen, the induction of pathogenesis-related proteins and the activation of complex phytohormone signaling pathways that involves crosstalk between salicylic acid, jasmonic acid, ethylene and possibly auxins. Moreover, the expression of F. circinatum genes related to hormone biosynthesis suggests manipulation of the host phytohormone balance to its own benefit. CONCLUSIONS We hypothesize three key steps of host manipulation: perturbing ethylene homeostasis by fungal expression of genes related to ethylene biosynthesis, blocking jasmonic acid signaling by coronatine insensitive 1 (COI1) suppression, and preventing salicylic acid biosynthesis from the chorismate pathway by the synthesis of isochorismatase family hydrolase (ICSH) genes. These results warrant further testing in F. circinatum mutants to confirm the mechanism behind perturbing host phytohormone homeostasis.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Eugenia Iturritxa
- NEIKER, Granja Modelo de Arkaute, Apdo 46, 01080, Vitoria-Gasteiz, Spain
| | - Rosa Raposo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Instituto de Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid/INIA, Valladolid, Spain
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Placido DF, Dong N, Dong C, Cruz VMV, Dierig DA, Cahoon RE, Kang BG, Huynh T, Whalen M, Ponciano G, McMahan C. Downregulation of a CYP74 Rubber Particle Protein Increases Natural Rubber Production in Parthenium argentatum. FRONTIERS IN PLANT SCIENCE 2019; 10:760. [PMID: 31297121 PMCID: PMC6607968 DOI: 10.3389/fpls.2019.00760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/24/2019] [Indexed: 05/31/2023]
Abstract
We report functional genomics studies of a CYP74 rubber particle protein from Parthenium argentatum, commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with AOS gene expression down-regulated by RNAi (AOSi) exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield. AOSi lines had higher leaf and stem biomass, thicker stembark tissues, increased stem branching and improved net photosynthetic rate. Importantly, the rubber content was significantly increased in AOSi lines compared to the wild-type (WT), vector control and AOS overexpressing (AOSoe) lines, when grown in controlled environments both in tissue-culture media and in greenhouse/growth chambers. Rubber particles from AOSi plants consistently had less AOS particle-associated protein, and lower activity (for conversion of 13-HPOT to allene oxide). Yet plants with downregulated AOS showed higher rubber transferase enzyme activity. The increase in biomass in AOSi lines was associated with not only increases in the rate of photosynthesis and non-photochemical quenching (NPQ), in the cold, but also in the content of the phytohormone SA, along with a decrease in JA, GAs, and ABA. The increase in biosynthetic activity and rubber content could further result from the negative regulation of AOS expression by high levels of salicylic acid in AOSi lines and when introduced exogenously. It is apparent that AOS in guayule plays a pivotal role in rubber production and plant growth.
Collapse
Affiliation(s)
- Dante F. Placido
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Niu Dong
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Chen Dong
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Von Mark V. Cruz
- Guayule Research Farm, Section Manager Agricultural Operations, Bridgestone Americas, Inc., Eloy, AZ, United States
| | - David A. Dierig
- Guayule Research Farm, Section Manager Agricultural Operations, Bridgestone Americas, Inc., Eloy, AZ, United States
| | - Rebecca E. Cahoon
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, United States
| | | | - Trinh Huynh
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Maureen Whalen
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Grisel Ponciano
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Colleen McMahan
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| |
Collapse
|
5
|
Maynard D, Gröger H, Dierks T, Dietz KJ. The function of the oxylipin 12-oxophytodienoic acid in cell signaling, stress acclimation, and development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5341-5354. [PMID: 30169821 DOI: 10.1093/jxb/ery316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 05/24/2023]
Abstract
Forty years ago, 12-oxophytodienoic acid (12-OPDA) was reported as a prostaglandin (PG)-like metabolite of linolenic acid found in extracts of flaxseed. Since then, numerous studies have determined the role of 12-OPDA in regulating plant immunity, seed dormancy, and germination. This review summarizes our current knowledge of the regulation of 12-OPDA synthesis in the chloroplast and 12-OPDA-dependent signaling in gene expression and targeting protein functions. We describe the properties of OPDA that are linked to the activities of PGs, which are derived from arachidonic acid and act as tissue hormones in animals, including humans. The similarity of OPDA with bioactive PGs is particularly evident for the most-studied cyclopentenone, PG 15-dPGJ2. In addition to chemical approaches towards 12-OPDA synthesis, bio-organic synthesis strategies for 12-OPDA and analogous substances have recently been established. The resulting availability of OPDA will aid the identification of additional effector proteins, help in elucidating the mechanisms of OPDA sensing and transmission, and will foster the analysis of the physiological responses to OPDA in plants. There is a need to determine the compartmentation and transport of 12-OPDA and its conjugates, over long distances as well as short. It will be important to further study OPDA in animal and human cells, for example with respect to beneficial anti-inflammatory and anti-cancer activities.
Collapse
Affiliation(s)
- Daniel Maynard
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Thomas Dierks
- Biochemistry I, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Identification and functional characterisation of an allene oxide synthase from grapevine (Vitis vinifera L. Sauvignon blanc). Mol Biol Rep 2018; 45:263-277. [DOI: 10.1007/s11033-018-4159-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/31/2018] [Indexed: 01/01/2023]
|
7
|
Tian WM, Yang SG, Shi MJ, Zhang SX, Wu JL. Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:95-103. [PMID: 26070085 DOI: 10.1016/j.jplph.2015.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 05/08/2023]
|
8
|
Król P, Igielski R, Pollmann S, Kępczyńska E. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:122-32. [PMID: 25867625 DOI: 10.1016/j.jplph.2015.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/09/2014] [Accepted: 01/22/2015] [Indexed: 05/23/2023]
Abstract
Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici, so it can be applied in practice.
Collapse
Affiliation(s)
- P Król
- Department of Plant Biotechnology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - R Igielski
- Department of Plant Biotechnology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - S Pollmann
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - E Kępczyńska
- Department of Plant Biotechnology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
| |
Collapse
|
9
|
He Q, Hong K, Zou R, Liao F, Cui S, Zhang E, Huang M. The role of jasmonic acid and lipoxygenase in propylene-induced chilling tolerance on banana fruit. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2080-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Khan H, Saeed M, Gilani AH, Mehmood MH, Rehman NU, Muhammad N, Abbas M, Haq IU. Bronchodilator activity of aerial parts of Polygonatum verticillatum augmented by anti-inflammatory activity: attenuation of Ca²⁺ channels and lipoxygenase. Phytother Res 2012; 27:1288-92. [PMID: 23109174 DOI: 10.1002/ptr.4860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022]
Abstract
Polygonatum verticillatum is commonly used for the treatment of asthma and inflammation. The current study was aimed to scrutinize the pharmacological profile of methanolic extract of the aerial parts (PA). Isolated tracheal preparations were used for the evaluation of bronchodilatory activity, whilst the in vivo carrageenan-induced paw oedema test and an in vitro lipoxygenase (LOX) inhibitory assay were used for the assessment of the anti-inflammatory profile of PA. When tested against carbachol and K⁺ (80 mM)-induced contractions, PA caused complete inhibition of isolated rabbit tracheal preparations in a dose-dependent mode, similar to verapamil. While elucidating possible mechanism, PA shifted the Ca²⁺ concentration-response curves to the right, analogous to that produced by verapamil, confirming a Ca²⁺ channel blocker-like activity. PA provoked profound reduction in paw oedema with a maximum protection of 60.87% at 200 mg/kg i.p. in a dose-dependent manner which was augmented by its prominent LOX inhibitory activity (IC₅₀ : 125 µg/mL). These findings authenticated its therapeutic potential in the treatment of asthmatic and inflammatory conditions.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. PLANTA 2010; 232:1423-32. [PMID: 20839007 PMCID: PMC2957573 DOI: 10.1007/s00425-010-1265-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.
Collapse
Affiliation(s)
- Antonio Leon-Reyes
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
- Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica (Cumbaya), P.O. Box 17-1200-841, Quito, Ecuador
| | - Dieuwertje Van der Does
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
| | - Elvira S. De Lange
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
| | - Carolin Delker
- Leibniz Institute of Plant Biochemistry, 06120 Halle, Weinberg 3, Germany
| | - Claus Wasternack
- Leibniz Institute of Plant Biochemistry, 06120 Halle, Weinberg 3, Germany
| | - Saskia C. M. Van Wees
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
| | - Tita Ritsema
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
- Present Address: Amsterdam Molecular Therapeutics, Meibergdreef 61, 1100 DA Amsterdam, The Netherlands
| | - Corné M. J. Pieterse
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P.O. Box 80056, 3508 TB Utrecht, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
12
|
Duan C, Rio M, Leclercq J, Bonnot F, Oliver G, Montoro P. Gene expression pattern in response to wounding, methyl jasmonate and ethylene in the bark of Hevea brasiliensis. TREE PHYSIOLOGY 2010; 30:1349-59. [PMID: 20660491 DOI: 10.1093/treephys/tpq066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Natural rubber production in Hevea brasiliensis is determined by both tapping and ethephon frequencies. It is affected by a complex physiological disorder called tapping panel dryness. This syndrome is likely to be induced by environmental and latex harvesting stresses. Defence responses, including rubber biosynthesis, are dramatically mediated by wounding, jasmonate and ethylene (ET), among other factors. Using real-time RT-PCR, the effects of wounding, methyl jasmonate (MeJA) and ET on the relative transcript abundance of a set of 25 genes involved in their signalling and metabolic pathways were studied in the bark of 3-month-old epicormic shoots. Temporal regulation was found for 9 out of 25 genes. Wounding treatment regulated the transcript abundance of 10 genes. Wounding-specific regulation was noted for the HbMAPK, HbBTF3b, HbCAS1, HbLTPP and HbPLD genes. MeJA treatment regulated the transcript abundance of nine genes. Of these, the HbMYB, HbCAS2, HbCIPK and HbChi genes were shown to be specifically MeJA inducible. ET response was accompanied by regulation of the transcript abundance of eight genes, and six genes, HbETR2, HbEIN2, HbEIN3, HbCaM, HbPIP1 and HbQM, were specifically regulated by ET treatment. Additionally, the transcript level of the HbGP and HbACR genes was enhanced by all three treatments simultaneously. Overall, a large number of genes were found to be regulated 4 h after the treatments were applied. This study nevertheless revealed some jasmonic acid-independent wound signalling pathways in H. brasiliensis, provided a general characterization of signalling pathways and will serve as a new base from which to launch advanced studies of the network of pathways operating in H. brasiliensis.
Collapse
Affiliation(s)
- Cuifang Duan
- Chinese Academy of Tropical Agriculture Sciences, Danzhou, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
13
|
Kinkema M, Gresshoff PM. Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1337-48. [PMID: 18785829 DOI: 10.1094/mpmi-21-10-1337] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Glycine max nodule autoregulation receptor kinase (GmNARK) plays a central role in the systemic signal transduction pathway controlling nodulation in soybean. We used transcriptional profiling to identify potential downstream signals of this receptor kinase. These studies revealed that GmNARK-mediated signaling controls the expression of genes involved in the jasmonic acid (JA) pathway. Genes encoding the key enzymes controlling JA biosynthesis as well as JA-response genes were regulated systemically but not locally by root inoculation with Bradyrhizobium japonicum. This systemic regulation was abolished in Gmnark mutant plants, indicating that their expression was specifically controlled by signaling events associated with this receptor kinase. Foliar application of a JA biosynthesis inhibitor significantly reduced nodulation specifically in supernodulating mutant plants. These results indicate that the receptor-mediated regulation of JA signaling plays an important role in the AON signal transduction pathway. A second class of genes was identified that were controlled by GmNARK in a rhizobia-independent manner. These candidates provide insight on additional, nonsymbiotic signaling pathways that are likely regulated by GmNARK, such as those involved in root growth and defense. The discovery of downstream components of the GmNARK receptor kinase advances our understanding of the systemic control of nodule development and its association with other signaling networks.
Collapse
Affiliation(s)
- Mark Kinkema
- The University of Queensland, St. Lucia, QLD 4072, Australia
| | | |
Collapse
|
14
|
LIU Y, PAN QH, ZHAN JC, TIAN RR, HUANG WD. Response of Endogenous Salicylic Acid and Jasmonates to Mechanical Wounding in Pea Leaves. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1671-2927(08)60061-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|