1
|
Chen J, Lu YL, Huang Y, Zhang F, Ye H, Huang YH, Zhang XD, Jiao Z, Su CY. Asymmetric Cascade Photocycloaddition-Acyloin Rearrangement Enabled by Cage-Confined Visible-Light Catalysis. J Am Chem Soc 2025; 147:13008-13016. [PMID: 40195936 DOI: 10.1021/jacs.5c03074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Enzymatic catalysis in biological systems is characterized by the specific pocket confinement imposed by various protein matrixes, enabling the synthesis of a diverse array of functional biomolecules. Development of new catalysts that incorporate multiple catalytic centers within the enzyme-mimic confined spaces presents a meaningful yet challenging project for synthetic chemists. Here, we present our recent achievement in synthesizing a chiral photosensitive metal-organic cage (cPMOC), Δ4-/Λ4-MOC-68-Ru4, which possesses multiple chiral pockets that can facilitate the visible-light-induced asymmetric cascade intermolecular [2 + 2] cycloaddition/acyloin rearrangement for the first time. The current photochemical transformation affords various bicyclo[3.2.1]octanes with opposite regiospecificity in contrast to well-established thermodynamically favored cascade [3 + 2] cycloaddition transformations with similar reaction counterparts. The distinctive pocket size of cage 2 inhibits the dimerization of α,β-unsaturated ketones and promotes the heterocycloaddition between the ketone and smaller cyclic 1,2-dione, underscoring the critical role of the microenvironmental shape and size for guest binding in determining the confined catalytic reactivity.
Collapse
Affiliation(s)
- Jie Chen
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongxian Huang
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fang Zhang
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- Instrumental Analysis Research Center, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoren Ye
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin-Hui Huang
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwei Jiao
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- GBRCE for Functional Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Sun J, Jin J, Xia J, Yu R, Zhang Y, Hou J, Gao C, Wang M. Integration of Phenotypic, Accumulative, Physiological-Biochemical, and Transcriptomic Analyses Reveals New Insights in Lettuce Response to Iodine: Enhancement or Toxic Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40230013 DOI: 10.1021/acs.jafc.4c10919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Iodine interferes with plant gene expression and affects plant growth, but the molecular mechanisms behind plant responses to iodine are not yet fully understood. In this study, lettuce (Lactuca sativa L.) was exposed to varying levels (0, 1, 5, 10, 50, and 100 μM) of iodine (NaI and NaIO3). The results indicate that NaI was more biologically effective than NaIO3. Low concentrations of iodine increased plant biomass, photosynthetic pigment content, and protein content while maintaining reactive oxygen species homeostasis by regulating antioxidant enzyme activities and antioxidant content. However, high concentrations of iodine caused toxic phenotypic symptoms and increased oxidative stress. Transcriptomic analysis showed that high concentration (50 μM) of NaI led to the downregulation of most genes related to photosynthetic metabolism, disrupting the electron transfer process and Calvin cycle of photosynthesis. Furthermore, iodine exposure activated plant hormone signaling. In conclusion, this study revealed the morpho-physiological, biochemical, and transcriptional response mechanisms of lettuce to iodine exposure.
Collapse
Affiliation(s)
- Jintao Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jinxia Xia
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Rui Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yue Zhang
- Tianjin Tianda Qiushi Electric Power High Technology Co., Ltd., Tianjin 300392, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chenyu Gao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mengge Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
3
|
Shang HQ, Bo Yang Q, Qiang S, Zheng R, Zhang CQ, Hu CY, Chen QH, Meng YH. Engineering Caffeic Acid O-Methyltransferase for Efficient De Novo Ferulic Acid Synthesis. Eng Life Sci 2025; 25:e70018. [PMID: 40190727 PMCID: PMC11968058 DOI: 10.1002/elsc.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Ferulic acid is a high-value chemical synthesized in plants. The ferulic acid biosynthesis is still affected by the insufficient methylation activity of caffeic acid O-methyltransferase (COMT). In this study, we engineered COMT from Arabidopsis thaliana to match caffeic acid, and the mutant COMT N129V-H313A-F174L showed 4.19-fold enhanced catalytic efficiency for degrading caffeic acid. Then, we constructed the de novo synthesis pathway of ferulic acid by introducing tyrosine ammonia lyase from Flavobacterium johnsoniae (FjTAL), 4-hydroxyphenylacetate 3-hydroxylase from Escherichia coli (EcHpaBC), and mutant COMT N129V-H313A-F174L, and further increased tyrosine synthesis. Furthermore, we overexpressed two copies of COMT N129V-H313A-F174L and enhanced the supply of S-adenosyl-L-methionine (SAM) by expressed S-ribosylhomocysteine lyase (luxS) and 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (mtn) to increase the production of ferulic acid. Finally, the production of ferulic acid reached 1260.37 mg/L in the shake-flask fermentation and 4377 mg/L using a 50 L bioreactor by the engineered FA-11. In conclusion, COMT enzyme engineering combined with global metabolic engineering effectively improved the production of ferulic acid and successfully obtained a fairly high level of ferulic acid production.
Collapse
Affiliation(s)
- Huai Qi Shang
- Engineering Research Center for High‐Valued Utilization of Fruit Resources in Western China, Ministry of EducationShaanxi Normal UniversityXianShaanxiP. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal UniversityXianShaanxiP. R. China
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXianShaanxiP. R. China
- Xianyang Weicheng Mile SchoolXianyangP. R. China
| | - Qing Bo Yang
- Engineering Research Center for High‐Valued Utilization of Fruit Resources in Western China, Ministry of EducationShaanxi Normal UniversityXianShaanxiP. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal UniversityXianShaanxiP. R. China
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXianShaanxiP. R. China
| | - Shan Qiang
- Engineering Research Center for High‐Valued Utilization of Fruit Resources in Western China, Ministry of EducationShaanxi Normal UniversityXianShaanxiP. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal UniversityXianShaanxiP. R. China
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXianShaanxiP. R. China
- Xi'an Healthful Biotechnology Co., Ltd.XianP. R. China
| | - Rong Zheng
- Engineering Research Center for High‐Valued Utilization of Fruit Resources in Western China, Ministry of EducationShaanxi Normal UniversityXianShaanxiP. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal UniversityXianShaanxiP. R. China
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXianShaanxiP. R. China
| | - Chao Qun Zhang
- Engineering Research Center for High‐Valued Utilization of Fruit Resources in Western China, Ministry of EducationShaanxi Normal UniversityXianShaanxiP. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal UniversityXianShaanxiP. R. China
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXianShaanxiP. R. China
| | - Ching Yuan Hu
- Engineering Research Center for High‐Valued Utilization of Fruit Resources in Western China, Ministry of EducationShaanxi Normal UniversityXianShaanxiP. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal UniversityXianShaanxiP. R. China
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXianShaanxiP. R. China
- Department of Human Nutrition, Food and Animal SciencesCollege of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiʻiUSA
| | - Qi Hang Chen
- Engineering Research Center for High‐Valued Utilization of Fruit Resources in Western China, Ministry of EducationShaanxi Normal UniversityXianShaanxiP. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal UniversityXianShaanxiP. R. China
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXianShaanxiP. R. China
- Science Center for Future Foods, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Yong Hong Meng
- Engineering Research Center for High‐Valued Utilization of Fruit Resources in Western China, Ministry of EducationShaanxi Normal UniversityXianShaanxiP. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal UniversityXianShaanxiP. R. China
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXianShaanxiP. R. China
| |
Collapse
|
4
|
Kaur A, Sharma K, Pawar SV, Sembi JK. Genome-wide characterization of PAL, C4H, and 4CL genes regulating the phenylpropanoid pathway in Vanilla planifolia. Sci Rep 2025; 15:10714. [PMID: 40155638 PMCID: PMC11953275 DOI: 10.1038/s41598-024-81968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/02/2024] [Indexed: 04/01/2025] Open
Abstract
Phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL) genes encodes the enzymes catalyzing the steps of the phenylpropanoid pathway which is responsible for the biosynthesis of a diverse range of therapeutically important phenylpropanoids. In the present study, identification and characterization of the PAL, C4H and 4CL gene family in an economically and medicinally important orchid species, Vanilla planifolia was done. Six PAL, two C4H and five 4CL proteins have been identified in Vanilla planifolia. All the amino acid residues related to the enzymatic activity were found to be conserved in all the identified proteins. Subcellular localization of VplPAL, VplC4H and Vpl4CL proteins predicted their location in the cytoplasm, endoplasmic reticulum and peroxisome, respectively. Alpha helices and random coils predominated the secondary structure of these proteins. Gene structure analysis showed the presence of two introns in C4H genes while PAL and 4CL genes had one and four introns present, respectively in the majority of members. The analysis of promoter sequences predicted cis-regulatory elements regulated by light, plant growth and development, phytohormones and abiotic and biotic stress conditions. Expression profiling of genes revealed variable relative expression for all the identified genes in various vegetative and reproductive tissues, suggesting their overall role in growth and development.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Karan Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Tian X, Wei X, Qin L, Zhang Y, Xiang Q, Zhao K, Yu X, Chen Q, Zhang L, Penttinen P, Gu Y. Buckwheat responds to co-exposure to PLA microplastics and Pb by regulating the synthesis of unsaturated fatty acids and jasmonates. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137066. [PMID: 39764956 DOI: 10.1016/j.jhazmat.2024.137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 03/12/2025]
Abstract
Polylactic acid (PLA) microplastics (MPs) and lead (Pb) co-contamination, an emerging co-contamination, may profoundly impact plant growth. We aimed to evaluate the effects of PLA-MPs and Pb on buckwheat growth and physiology and to elucidate the underlying molecular mechanisms through an integrated transcriptomic and metabolomic approach. PLA-MPs alone reduced buckwheat biomass by 26.0 %, while combined exposure to Pb and PLA-MPs (PLA-Pb) further exacerbated morphological impairments, decreasing biomass by 43.1 % and 50.4 % compared to the control. Antioxidant enzyme activities increased under Pb and PLA-Pb treatments. The analysis revealed 536 differentially expressed metabolites (DEMs) and 3229 differentially expressed genes (DEGs) in PLA-Pb vs. control, 168 DEMs and 1555 DEGs in PLA-Pb vs. PLA, and 196 DEMs and 4057 DEGs in PLA-Pb vs. Pb. Key DEGs involved in lignin biosynthesis, including caffeoyl-CoA-O-methyltransferase, cinnamoyl-CoA reductase, and catechol-O-methyltransferase, were upregulated, suggesting that buckwheat mitigates toxicity by enhancing cell wall modification. Similarly, DEGs and DEMs linked to jasmonate biosynthesis were enriched in the alpha-linolenic acid metabolic pathway, including allene oxide synthase, allene oxide cyclase, and 12-oxophytodienoate reductase, as well as methyl jasmonate. These results suggest that buckwheat counters PLA-MPs-Pb toxicity by enhancing oxidative stress responses and upregulating the synthesis of lignin and unsaturated fatty acids. In conclusion, this study provides novel insights into the molecular mechanisms of plant detoxification under PLA-MPs-Pb co-exposure, highlighting the need for ecological risk assessment of combined microplastic and heavy metal pollution.
Collapse
Affiliation(s)
- Xianrui Tian
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xieluyao Wei
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Leitao Qin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Mahmoud LM, Deol JK, Grosser JW, Killiny N, Dutt M. Transcriptomic and biochemical analysis of pummelo x finger lime hybrids in response to Huanglongbing (HLB). BMC PLANT BIOLOGY 2025; 25:235. [PMID: 39979795 PMCID: PMC11841000 DOI: 10.1186/s12870-025-06211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Huanglongbing (HLB) is a devastating bacterial disease caused by the bacterium Candidatus Liberibacter asiaticus (CaLas) that affects the citrus industry worldwide. This study investigated the response of two pummelo x finger lime hybrid siblings to natural infection with CaLas. The hybrids were identified primarily using leaf morphology and molecular marker assessments and were selected for further studies on the basis of the CaLas titers in leaf petioles. RESULTS HLB-infected budwood from the selected hybrids (PFL 2-61 and PFL 1-11), as well as the two parental plants, were propagated by grafting onto Swingle citrumelo rootstocks for further evaluation. Plant samples were collected two years after grafting for analysis. Leaves of PFL2-61 exhibited decreased CaLas titers compared with those of PFL 1-11. Additionally, we recorded increased chlorophyll content, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity in PFL 2-61 compared to PFL 1-11 and the parents. We subsequently conducted a detailed investigation of these two hybrid siblings using transcriptome analysis. Among the 20,675 differentially expressed genes (DEGs) identified, 1,416 were downregulated in PFL 2-61 compared with PFL 1-11, whereas 326 were upregulated. Transcriptome analysis revealed that many of the DEGs were associated with the cell wall structure, redox homeostasis, and biotic stress responses. Moreover, key genes related to the biosynthesis of secondary metabolites and phytohormones, including PAL1, jasmonate-related genes, and WRKY transcription factors, were upregulated in the tolerant hybrid (PFL 2-61). In contrast, three transcripts associated with the Sieve Element Occlusion N-Terminus (SEO_N) domain were downregulated in the tolerant hybrid (PFL 2-61). CONCLUSIONS Our findings provide valuable insights into the molecular mechanisms of tolerance and susceptibility to HLB in finger lime derived hybrids, highlighting the potential of this citrus species towards developing disease-tolerant varieties.
Collapse
Affiliation(s)
- Lamiaa M Mahmoud
- Department of Horticultural Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, 33850, USA
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jaideep Kaur Deol
- Department of Horticultural Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jude W Grosser
- Department of Horticultural Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, 33850, USA
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, 33850, USA
| | - Manjul Dutt
- Department of Horticultural Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, 33850, USA.
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
7
|
Zhang C, Guo H, Li Z, Yue S. Evolution of phenylalanine ammonia-lyase protein family from algae to angiosperm. Funct Integr Genomics 2025; 25:40. [PMID: 39966266 DOI: 10.1007/s10142-025-01548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Phenylpropanes, the precursors of various phenolic compounds in plants, are widely distributed. Phenylalanine ammonia-lyase (PAL) is the main enzyme that catalyzes the early step of the phenylpropanoid pathway to generate trans-cinnamic acid, which is the common precursor for the lignin and flavonoid biosynthetic pathways. Therefore, in this study, we focused on PAL evolution. A total of 584 PAL-like protein sequences were obtained, and only two PAL-like genes were found in algae, primary. Three main groups are separated by their different evolutionary stages. Group I mainly cluster ancient plants, and groups II and III are formed by angiosperms, which separate monocots (group II) and eudicots (group III). According to the sequence alignment, five main differences in amino acids may correlate with this separation, which involve the change of amino acid phosphorylation. The prediction analysis of GO and KEGG annotation information of each PAL protein showed that the proteins were clustered in cytoplasm and correlated with phenylalanine ammonia-lyase activity. Our results suggested that the PAL enzyme family expanded alongside the development of vascular tissues and underwent duplication events that facilitated gene cluster expansion and phenotypic diversity. Analysis of a reassembled and publicly available gene database confirmed that only two PAL genes were present in algae, whereas land plants possess a significantly greater number of PAL-like genes. This expansion is closely of PAL genes in land plants is closely associated with gene duplication events occurring at various evolutionary stages after algae plants. Futhermore, investigation into miRNAs revealed limited specificity across the plant evolution spectrum, with their primary role being the regulation and modulation of gene function. Additionally, analysis of PAL proteins across the plant kingdom ultimately elucidates that the evolution of their functions is intricately linked to the widespread distribution of cis-acting elements. This evolutionary trajectory reflected the natural selection processes that plants had undergone over time to enhance their eadaptability to diverse environments. These findings provide a valuable reference for future research into the functional evolution of PAL genes and their role in .plant adaptation and phenotypic diversity.
Collapse
Affiliation(s)
- Chao Zhang
- Bio-Agriculture Institute of Shaanxi, Xian, Shaanxi, People's Republic of China, 710043.
| | - Huan Guo
- Bio-Agriculture Institute of Shaanxi, Xian, Shaanxi, People's Republic of China, 710043
| | - Zhongling Li
- Bio-Agriculture Institute of Shaanxi, Xian, Shaanxi, People's Republic of China, 710043
| | - Shuning Yue
- Bio-Agriculture Institute of Shaanxi, Xian, Shaanxi, People's Republic of China, 710043
| |
Collapse
|
8
|
Wang S, Xu Y, Wang F, Gao S, Kang H, Ji X, Yao Y. Postharvest changes in the phenolic and free volatile compound contents in Shine Muscat grapes at room temperature. Food Chem 2025; 465:141958. [PMID: 39531964 DOI: 10.1016/j.foodchem.2024.141958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Herein, we studied changes in the contents of phenolic and free volatile compounds in Shine Muscat grapes stored at room temperature. Berry quality was maintained up to 11 d after harvest, and the levels of 35 phenolic compounds were observed to increase during storage. This increase is attributed to the upregulation of genes, including phenylalanine ammonia-lyases, 4-coumarate-CoA ligases, and stilbene synthases, in the phenylpropanoid pathway. The concentrations of total and rose-flavored volatiles, including terpenes and particularly monoterpenes, decreased in postharvest berries, which was attributed to the downregulation of genes in the mevalonate and 2-C-methyl-D-erythritol 4-phosphate pathways. By contrast, the C6 compound content increased during storage, which might have played a role in the upregulation of lipoxygenase and hydroperoxide. Additionally, the marker compounds rutin and 1-hexanol were identified during storage. Therefore, this study suggested that the health benefits and C6 compound-derived flavor increased, whereas the rose flavor decreased in postharvest berries.
Collapse
Affiliation(s)
- Shengnan Wang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yihang Xu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Fei Wang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Shiwei Gao
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Hui Kang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xinglong Ji
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuxin Yao
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
9
|
Singh D, Shukla G. The multifaceted anticancer potential of luteolin: involvement of NF-κB, AMPK/mTOR, PI3K/Akt, MAPK, and Wnt/β-catenin pathways. Inflammopharmacology 2025; 33:505-525. [PMID: 39543054 DOI: 10.1007/s10787-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Cancer is the predominant and major cause of fatality worldwide, based on the different types of cancer. There is a limitation in the current treatment. So we need better therapeutic agents that counteract the progression and development of malignant tumours. Plant-derived products are closely related and useful for human health. Luteolin is a polyphenolic flavonoid bioactive molecule that is present in various herbs, vegetables, fruits, and flowers and exhibits chemoprotective and pharmacological activity against different malignancies. To offer innovative approaches for the management of various cancers, we present a comprehensive analysis of the latest discoveries on luteolin. The aim is to inspire novel concepts for the development of advanced pharmaceuticals targeting cancer and search specifically targeted reviews and research articles published from January 1999 to January 2024 that investigated the application of luteolin in various cancer management. A thorough literature search utilizing the keywords "luteolin" "Signalling Pathway" "cancer" and nanoparticles was performed in the databases of Google Scholar, Web of Science, SCOPUS, UGC care list and PubMed. Through the compilation of existing research, we have discovered that luteolin possesses several therapeutic actions against various cancer via a signaling pathway involving the of NF-κB regulation, AMPK/mTOR, toll-like receptor, Nrf-2, PI3K/Akt MAPK and Wnt/β-catenin and their underlying mechanism of action has been well understood. This review intended to completely integrate crucial information on natural sources, biosynthesis, pharmacokinetics, signaling pathways, chemoprotective and therapeutic properties against various cancers, and nanoformulation of luteolin.
Collapse
Affiliation(s)
- Deepika Singh
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Gaurav Shukla
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
10
|
Abulsoud AI, Aly SH, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, El Tabaa MM, Rashed M, El-Shiekh RA, Doghish AS. Natural compounds as modulators of miRNAs: a new frontier in bladder cancer treatment. Med Oncol 2025; 42:56. [PMID: 39883227 DOI: 10.1007/s12032-025-02613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Bladder cancer (BC) is a major global health issue with a high recurrence rate and limited effective treatments. Over the past few years, it has become evident that miRNAs play a role in the carcinogenesis process, particularly in regulating genes that promote cancer cell proliferation and invasion. This review focuses on the extent to which natural products can act as potential miRNA modulators for the management of bladder cancer. Polyphenols, flavonoids, and other phytochemicals are natural compounds found to have inherent potential to modulate miRNAs and reform the oncogenic properties of bladder cancer cells regulating cell growth and death. In integration with the current cancer treatment regimes, such natural agents may safely substitute for the traditional chemical chemotherapeutic agents of the conventional approaches. To this end, this review presents the existing knowledge of natural compounds as regulators of miRNA, their mechanisms for the management of BC, the role of their nanoparticles, and future novel therapies. The use of these compounds is not only a therapeutic practice for the conditions of bladder cancer, but it also upholds new avenues for creativity.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
11
|
Sun P, Ge G, Sun L, Bao J, Zhao M, Hao J, Zhang Y, Liu G, Wang Z, Jia Y. Metabolomics combined with physiology and transcriptomics reveal the regulation of key nitrogen metabolic pathways in alfalfa by foliar spraying with nano-selenium. J Nanobiotechnology 2025; 23:7. [PMID: 39755664 DOI: 10.1186/s12951-024-03073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Selenium promotes plant growth and improves nutritional quality, and the role of nano-selenium in alfalfa in regulating nutritional quality is unknown. In this study, using the 15N labeling method, it was found that nano-selenium could promote plant nitrogen metabolism and photosynthesis by increasing the light energy capture capacity and the activities of key enzymes of the nitrogen metabolism process, leading to an increase in alfalfa nitrogen accumulation and dry matter content. The transcriptome and metabolome revealed that nano-selenium mainly affected the pathways of 'biosynthesis of amino acids', 'starch and sucrose metabolism', 'pentose and glucuronate interconversions', 'pentose phosphate pathway', and 'flavonoid biosynthesis'. At the early stage of nano-selenium treatment, the nitrogen metabolism, sugar metabolism, and flavonoid metabolism pathways were regulated by modulating the expression of genes such as NR, Nir, GS, GOGAT, E3.1.1.11, adh, CHS, FLS, etc., which increased the amount of L-glutamic, L-histidine, glycerone-P, coniferin, naringenin chalcone, and other beneficial substances, thus promoting the acceleration of nitrogen accumulation by plants. In summary, this study provides a better understanding of the mechanisms by which nano-selenium regulates key nitrogen metabolic pathways in alfalfa.
Collapse
Affiliation(s)
- Pengbo Sun
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jian Bao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Muqier Zhao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Junfeng Hao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuhan Zhang
- Forestry and Grassland Work Station of Inner Mongolia, Hohhot, China
| | - Guoshun Liu
- Forestry Station of Xining, Xining, Qinhai, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
12
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
13
|
Yu L, Bu L, Li D, Zhu K, Zhang Y, Wu S, Chang L, Ding X, Jiang Y. Effects of Far-Red Light and Ultraviolet Light-A on Growth, Photosynthesis, Transcriptome, and Metabolome of Mint ( Mentha haplocalyx Briq.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3495. [PMID: 39771193 PMCID: PMC11728695 DOI: 10.3390/plants13243495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
To investigate the effects of different light qualities on the growth, photosynthesis, transcriptome, and metabolome of mint, three treatments were designed: (1) 7R3B (70% red light and 30% blue light, CK); (2) 7R3B+ far-red light (FR); (3) 7R3B+ ultraviolet light A (UVA). The results showed that supplemental FR significantly promoted the growth and photosynthesis of mint, as evidenced by the increase in plant height, plant width, biomass, effective quantum yield of PSII photochemistry (Fv'/Fm'), maximal quantum yield of PSII (Fv/Fm), and performance index (PI). UVA and CK exhibited minimal differences. Transcriptomic and metabolomic analysis indicated that a total of 788 differentially expressed genes (DEGs) and 2291 differential accumulated metabolites (DAMs) were identified under FR treatment, mainly related to plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis. FR also promoted the accumulation of phenylalanine, sinapyl alcohol, methylchavicol, and anethole in the phenylpropanoid biosynthesis pathway, and increased the levels of luteolin and leucocyanidin in the flavonoid biosynthesis pathway, which may perhaps be applied in practical production to promote the natural antibacterial and antioxidant properties of mint. An appropriate increase in FR radiation might alter transcript reprogramming and redirect metabolic flux in mint, subsequently regulating its growth and secondary metabolism. Our study uncovered the regulation of FR and UVA treatments on mint in terms of growth, physiology, transcriptome, and metabolome, providing reference for the cultivation of mint and other horticultural plants.
Collapse
Affiliation(s)
- Lishu Yu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (L.Y.); (D.L.); (K.Z.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.Z.); (S.W.)
| | - Lijun Bu
- Shanghai Sunqiaoyijia Tech-Agriculture Co., Ltd., Shanghai 201210, China;
| | - Dandan Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (L.Y.); (D.L.); (K.Z.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.Z.); (S.W.)
| | - Kaili Zhu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (L.Y.); (D.L.); (K.Z.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.Z.); (S.W.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.Z.); (S.W.)
| | - Shaofang Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.Z.); (S.W.)
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.Z.); (S.W.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (L.Y.); (D.L.); (K.Z.)
| |
Collapse
|
14
|
Manaithiya A, Bhowmik R, Acharjee S, Sharma S, Kumar S, Imran M, Mathew B, Parkkila S, Aspatwar A. Elucidating molecular mechanism and chemical space of chalcones through biological networks and machine learning approaches. Comput Struct Biotechnol J 2024; 23:2811-2836. [PMID: 39045026 PMCID: PMC11263914 DOI: 10.1016/j.csbj.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
We developed a bio-cheminformatics method, exploring disease inhibition mechanisms using machine learning-enhanced quantitative structure-activity relationship (ML-QSAR) models and knowledge-driven neural networks. ML-QSAR models were developed using molecular fingerprint descriptors and the Random Forest algorithm to explore the chemical spaces of Chalcones inhibitors against diverse disease properties, including antifungal, anti-inflammatory, anticancer, antimicrobial, and antiviral effects. We generated and validated robust machine learning-based bioactivity prediction models (https://github.com/RatulChemoinformatics/QSAR) for the top genes. These models underwent ROC and applicability domain analysis, followed by molecular docking studies to elucidate the molecular mechanisms of the molecules. Through comprehensive neural network analysis, crucial genes such as AKT1, HSP90AA1, SRC, and STAT3 were identified. The PubChem fingerprint-based model revealed key descriptors: PubchemFP521 for AKT1, PubchemFP180 for SRC, PubchemFP633 for HSP90AA1, and PubchemFP145 and PubchemFP338 for STAT3, consistently contributing to bioactivity across targets. Notably, chalcone derivatives demonstrated significant bioactivity against target genes, with compound RA1 displaying a predictive pIC50 value of 5.76 against HSP90AA1 and strong binding affinities across other targets. Compounds RA5 to RA7 also exhibited high binding affinity scores comparable to or exceeding existing drugs. These findings emphasize the importance of knowledge-based neural network-based research for developing effective drugs against diverse disease properties. These interactions warrant further in vitro and in vivo investigations to elucidate their potential in rational drug design. The presented models provide valuable insights for inhibitor design and hold promise for drug development. Future research will prioritize investigating these molecules for mycobacterium tuberculosis, enhancing the comprehension of effectiveness in addressing infectious diseases.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Satarupa Acharjee
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore 560043, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Health Sciences Campus, Kochi, India
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Health Sciences Campus, Kochi, India
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
15
|
He M, Ma X, Zhou Y, Wang F, Fang G, Wang J. Combined Metabolome and Transcriptome Analyses Reveals Anthocyanin Biosynthesis Profiles Between Purple and White Potatoes. Int J Mol Sci 2024; 25:12884. [PMID: 39684596 DOI: 10.3390/ijms252312884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Colored potatoes with red and purple skin or flesh possess significant nutritional value and health benefits due to their rich anthocyanin content. To investigate the genetic mechanisms underlying color formation, the high-anthocyanin-content purple-skinned and purple-fleshed potato line 15-12-16, and the white-skinned and white-fleshed Xiazhai 65 variety were used for ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis, which was conducted to identify and quantify anthocyanins. RNA sequencing was performed to analyze the transcriptome. The results indicated a significant upregulation of genes within the anthocyanidin biosynthesis pathway in the purple potato, while these genes were either downregulated or absent in the white potato. The bHLH, MYB, and WRKY gene families exhibited a greater number of regulatory members, suggesting their pivotal role in color formation. Integrated analysis of the transcriptional and metabolic revealed that 12 differentially expressed genes (DEGs) related to the anthocyanidin biosynthetic had a significant correlation with 18 anthocyanin metabolites. Notably, the key gene St5GT in the anthocyanidin biosynthesis pathway was markedly upregulated in the purple skin and flesh. Furthermore, the overexpression of St5GT (PGSC0003DMG400004573) in tobacco contributed to anthocyanin accumulation. The expression of 10 DEGs was validated through quantitative real-time PCR. In conclusion, these findings provide new insights into anthocyanin biosynthesis and accumulation in purple potatoes, offering valuable candidate genes for the future breeding of colored potatoes.
Collapse
Affiliation(s)
- Miaomiao He
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Xinping Ma
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Yun Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Fang Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Guonan Fang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| |
Collapse
|
16
|
Song Z, Xu X, Chen X, Chang J, Li J, Cheng J, Zhang B. Multi-omics analysis provides insights into the mechanism underlying fruit color formation in Capsicum. FRONTIERS IN PLANT SCIENCE 2024; 15:1448060. [PMID: 39568454 PMCID: PMC11576296 DOI: 10.3389/fpls.2024.1448060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Fruit color is a crucial attribute of fruit quality in peppers (Capsicum spp.). However, few studies have focused on the mechanism of color formation in immature pepper fruits. In this study, the light-yellow color observed in immature CSJ009 fruits compared to CSJ010 could be attributed to decreased chlorophyll and carotenoid pigments. Through integrated analysis of the transcriptome and metabolome of CSJ009 and CSJ010, we identified 23,930 differentially expressed genes (DEGs) and 345 differentially accumulated metabolites (DAMs). Furthermore, integrated analysis revealed a strong correlation between the HCT-like gene and metabolite MWS0178 (chlorogenic acid). Paraffin section assay revealed that the epidermal cells of immature CSJ010 fruits exhibited a more compact arrangement with significantly greater length than those of CSJ009. Quantitative determination of carotenoids showed that lutein emerged as the predominant carotenoid in immature pepper fruits. Additionally, missense mutation of LCYB2 is likely to lead to a decrease in β-carotene content in immature CSJ009 fruits, whereas CCS may directly catalyze the conversion of lycopene to β-carotene in mature fruits. The null mutation in CCS promoted the biosynthesis of β,ϵ-branch carotenoids leading to lutein being the most abundant carotenoid found in orange CSJ010 fruits. These findings provide important insights into the mechanism underlying color formation in pepper fruits and establish a foundation for the further exploration of color-related genes.
Collapse
Affiliation(s)
- Zhao Song
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaowan Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao Chen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jingjing Chang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baige Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
17
|
Xu S, Zhang Y, Liang F, Jiang S, Niu S, Wang X, Zhou Y, Cui B, Yuan X. Metabolomic and transcriptomic analyses reveal the mechanism of polysaccharide and secondary metabolite biosynthesis in Bletilla striata tubers in response to shading. Int J Biol Macromol 2024; 279:135545. [PMID: 39270910 DOI: 10.1016/j.ijbiomac.2024.135545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Polysaccharides and various secondary metabolites are the major bioactive ingredients in Bletilla striata tubers and their biosynthesis and accumulation are influenced by light intensity. However, the mechanisms underlying shading effects remain largely unknown. In the present study, we used a combined analysis of the physiology, metabolome, and transcriptome to investigate the physiological activities and bioactive component accumulation of B. striata under different shading treatments (S0, S50, S70, and S90). The dry weight of shoots and tubers, net photosynthetic rate, and polysaccharide content were highest in S50 and lowest in S90. The content of precursors (sucrose, Glucose-6P, and Mannose-6P) for polysaccharide synthesis significantly increased in S50. However, the expression levels of genes involved in starch biosynthesis decreased in S50. Several structural genes involved in secondary metabolism, including cinnamic acid 4-hydroxylase (C4H), chalcone synthase (CHS), and 1-Deoxy-D-xylulose-5-phosphate synthase (DXS), showed decreased expression in S50. However, the shading effect on the biosynthesis of secondary metabolites (phenylpropanoids, flavonoids, and terpenoids) was inconsistent. Our study provides the molecular mechanisms underlying the effects of shading on the biosynthesis of polysaccharides and secondary metabolites in B. striata and offers a theoretical basis for the artificial cultivation and industrial production of bioactive ingredients.
Collapse
Affiliation(s)
- Shenping Xu
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Yan Zhang
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Fang Liang
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Suhua Jiang
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Suyan Niu
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Ximeng Wang
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Yiran Zhou
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Bo Cui
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Xiuyun Yuan
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China.
| |
Collapse
|
18
|
Lee H, Park S, Lee SB, Song J, Kim TH, Kim BG. Tailored biosynthesis of diosmin through reconstitution of the flavonoid pathway in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1464877. [PMID: 39494057 PMCID: PMC11527692 DOI: 10.3389/fpls.2024.1464877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
The flavonoid diosmin (diosmetin 7-O-rutinoside) is used as a therapeutic agent for disorders of the blood vessels such as hemorrhoids and varicose veins. Diosmin is commercially produced using semi-synthetic methods involving the oxidation of hesperidin, the most abundant flavonoid in citrus fruits. However, this method produces byproducts that are toxic to the environment, and new sustainable methods to produce diosmin are required. Here, we used a synthetic biology approach to produce diosmin without generating toxic byproducts through reconstitution of the diosmin biosynthetic pathway in Nicotiana benthamiana. We first established that N. benthamiana leaves co-infiltrated with all seven genes in the flavonoid biosynthesis pathway produced high levels of luteolin, a precursor of diosmetin. We then compared the activity of modification enzymes such as methyltransferases, glucosyltransferases, and rhamnosyltransferases in Escherichia coli and in planta and selected genes encoding enzymes with the highest activity for producing diosmetin, diosmetin 7-O-glucoside, and diosmin, respectively. Finally, we reconstructed the entire diosmin biosynthetic pathway using three constructs containing ten genes encoding enzymes in this pathway, from phenylalanine ammonia lyase to rhamnosyltransferase. N. benthamiana leaves transiently co-expressing all these genes yielded 37.7 µg diosmin per gram fresh weight. To our knowledge, this is the first report of diosmin production in a heterologous plant system without the supply of a precursor. Successful production of diosmin in N. benthamiana opens new avenues for producing other commercially important flavonoids using similar platforms.
Collapse
Affiliation(s)
- Hyo Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Sangkyu Park
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Saet Buyl Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Jaeeun Song
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
19
|
Zhang X, Wang X, Wang T. Comprehensive Transcriptomic Analysis Reveals Defense-Related Genes and Pathways of Rice Plants in Response to Fall Armyworm ( Spodoptera frugiperda) Infestation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2879. [PMID: 39458827 PMCID: PMC11510987 DOI: 10.3390/plants13202879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Rice (Oryza sativa L.) serves as a substitute for bread and is a staple food for half of the world's population, but it is heavily affected by insect pests. The fall armyworm (Spodoptera frugiperda) is a highly destructive pest, threatening rice and other crops in tropical regions. Despite its significance, little is known about the molecular mechanisms underlying rice's response to fall armyworm infestation. In this study, we used transcriptome analysis to explore the global changes in gene expression in rice leaves during a 1 h and 12 h fall armyworm feeding. The results reveal 2695 and 6264 differentially expressed genes (DEGs) at 1 and 12 h post-infestation, respectively. Gene Ontology (GO) and KEGG enrichment analyses provide insights into biological processes and pathways affected by fall armyworm feeding. Key genes associated with hormone regulation, defense metabolic pathways, and antioxidant and detoxification processes were upregulated, suggesting the involvement of jasmonic acid (JA) signaling, salicylic acid biosynthesis pathways, auxin response, and heat shock proteins in defense during 1 h and 12 h after fall armyworm infestation. Similarly, key genes involved in transcriptional regulation and defense mechanisms reveal the activation of calmodulins, transcription factors (TFs), and genes related to secondary metabolite biosynthesis. Additionally, MYB, WRKY, and ethylene-responsive factors (ERFs) are identified as crucial TF families in rice's defense response. This study provides a comprehensive understanding of the molecular dynamics in rice responding to fall armyworm infestation, offering valuable insights for developing pest-resistant rice varieties and enhancing global food security. The identified genes and pathways provide an extensive array of genomic resources that can be used for further genetic investigation into rice herbivore resistance. This also suggests that rice plants may have evolved strategies against herbivorous insects. It also lays the groundwork for novel pest-resistance techniques for rice.
Collapse
Affiliation(s)
| | | | - Tao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (X.Z.); (X.W.)
| |
Collapse
|
20
|
Karamat U, Guo J, Jiang S, Khan I, Lu M, Fu M, Li G. Comprehensive, Genome-Wide Identification and Expression Analyses of Phenylalanine Ammonia-Lyase Family under Abiotic Stresses in Brassica oleracea. Int J Mol Sci 2024; 25:10276. [PMID: 39408602 PMCID: PMC11476911 DOI: 10.3390/ijms251910276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Phenylalanine ammonia-lyase (PAL) acts as the rate-limiting enzyme for anthocyanin biosynthesis through the phenylpropanoid pathway, a crucial component of plant secondary metabolism. The PAL gene family plays a crucial role in plants' defense and stress responses, but its in silico identification and expression analyses in Brassica oleracea under different abiotic stresses remain unexplored. In this study, nine BolPAL, seven BrPAL, four AtPAL, and seventeen BnPAL genes were obtained from the genomes of B. oleracea, Brassica rapa, Arabidopsis thaliana, and Brassica napus, respectively. Segmental duplication and purifying selection are the causes of the BolPAL gene's amplification and evolution. The BolPAL genes with comparable intron-exon architectures and motifs were grouped together in the same clade. Three categories comprised the cis-regulatory elements: abiotic stressors, phytohormones, and light. According to the results of the qRT-PCR experiments, the majority of the BolPAL genes were expressed highly under MeJA, a low temperature, and a high temperature, and they were downregulated under ABA. Under white light (100 µmol m-2 s-1) with 50, 100, or 150 µmol m-2 s-1 far-red (FR), only a small number of the PAL genes were expressed at 50 and 100 µmol m-2 s-1 FR, while the majority of the PAL genes were slightly elevated at 150 µmol m-2 s-1 FR. This work offers a theoretical foundation for molecular breeding research to investigate the role of BolPAL genes and their role in anthocyanin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (U.K.); (J.G.); (S.J.); (I.K.); (M.L.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (U.K.); (J.G.); (S.J.); (I.K.); (M.L.)
| |
Collapse
|
21
|
Du Q, Li R, Liu L, Chen L, Tang J, Deng J, Wang F. Application of Bacillus tequilensis for the control of gray mold caused by Botrytis cinerea in blueberry and mechanisms of action: inducing phenylpropanoid pathway metabolism. Front Microbiol 2024; 15:1455008. [PMID: 39282559 PMCID: PMC11392732 DOI: 10.3389/fmicb.2024.1455008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Background Botrytis cinerea a blueberry gray mold, is one of the main diseases affecting postharvest storage, causing significant losses. Several studies have shown that Bacillus tequilensis can prevent the growth of plant pathogens by producing various antibacterial substances, and can induce plant resistance. However, research on the biological management of post-harvest gray mold in blueberries using B. tequilensis remains unclear. Methods To better control the postharvest gray mold of blueberry, the effects of B. tequilensis KXF6501 fermentation solution (YY) and KXF6501 cell-free supernatant (SQ) on the induction of disease resistance in blueberry fruits were studied using biochemical and transcriptomic analyses. Results We found that YY controlled the conidial germination and mycelial growth of B. cinerea in vitro, followed by SQ. After 3 d of culture, the lesion diameter and incidence of gray mold in blueberry fruits inoculated with YY and SQ were smaller than those in the control group. Therefore, gray mold in blueberries was effectively controlled during the prevention period, and the control effect of YY was better than that of SQ. Transcription spectrum analysis of blueberry peel tissue showed that the YY- and SQ-induced phenylpropane metabolic pathways had more differentially expressed genes (DEGs) than other biological pathways. In addition, biochemical analyses showed that YY treatment effectively enhanced the activity of enzymes related to the phenylpropane pathway (phenylalanine ammonialyase [PAL], cinnamate 4-hydroxylase [C4H], 4-coumarate CoA ligase [4CL], and polyphenol oxidase [PPO]) and stimulated the synthesis of lignin, total phenols, and flavonoids, followed by SQ. Compared with the control, the YY and SQ treatments reduced the weight loss rate and better maintained the appearance and nutritional quality of the blueberry fruits. Conclusion Our findings suggest that B. tequilensis KXF6501 is potentially useful as a suitable bio-control agent in harvested blueberries.
Collapse
Affiliation(s)
- Qianjie Du
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Raoyong Li
- Forestry College, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Li Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Jia Deng
- Forestry College, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| |
Collapse
|
22
|
Liu S, Wu Z, Yang T, Xu J, Aishan S, Qin E, Ma K, Liu J, Qin R, Wang J, Tie J, Liu H. The Chrysosplenium sinicum genome provides insights into adaptive evolution of shade plants. Commun Biol 2024; 7:1004. [PMID: 39152309 PMCID: PMC11329650 DOI: 10.1038/s42003-024-06701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Chrysosplenium sinicum, a traditional Tibetan medicinal plant, can successfully thrive in low-light environments for long periods of time. To investigate the adaptive evolution of shade plants in low-light environments, we generated a chromosome-scale genome assembly (~320 Mb) for C. sinicum by combining PacBio sequencing and Hi-C technologies. Based on our results, gene families related to photosynthesis and cell respiration greatly expanded and evolved in C. sinicum genome due to intracellular DNA transfer from organelle genome to nuclear genome. Under positive selective pressure, adaptive evolution of light-harvesting complex II (LHCII) component protein CsLhcb1s resulted in the expansion of threonine residues at the phosphorylation site of STN7 kinase, potentially establishing a crucial genomic foundation for enhancing C. sinicum's adaptability in low-light environments. Through transcriptome and metabolome analysis, we identified chrysosplenol and chrysosplenoside as predominant flavonoid metabolites of C. sinicum and predicted their synthesis pathways. In addition, analysis of alternative splicing (AS) revealed that AS events help regulate state transition and flavonoid biosynthesis. The present study provides new insights into the genomes of shade plants exposed to low-light conditions and adaptive evolution of these genomes; in addition, the results improve our current knowledge on the biosynthetic and regulatory processes of chrysosplenol and chrysosplenoside.
Collapse
Affiliation(s)
- Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jindong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Kang Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiangqing Wang
- College of Computer Science, South-Central Minzu University, Wuhan, China
| | - Jun Tie
- College of Computer Science, South-Central Minzu University, Wuhan, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
23
|
Sharda D, Attri K, Choudhury D. Greener healing: sustainable nanotechnology for advanced wound care. DISCOVER NANO 2024; 19:127. [PMID: 39136798 PMCID: PMC11322481 DOI: 10.1186/s11671-024-04061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/29/2024] [Indexed: 08/16/2024]
Abstract
Wound healing involves a carefully regulated sequence of events, encompassing pro-inflammatory and anti-inflammatory stages, tissue regeneration, and remodeling. However, in individuals with diabetes, this process gets disrupted due to dysregulation caused by elevated glucose levels and pro-inflammatory cytokines in the bloodstream. Consequently, the pro-inflammatory stage is prolonged, while the anti-inflammatory phase is delayed, leading to impaired tissue regeneration and remodeling with extended healing time. Furthermore, the increased glucose levels in open wounds create an environment conducive to microbial growth and tissue sepsis, which can escalate to the point of limb amputation. Managing diabetic wounds requires meticulous care and monitoring due to the lack of widely available preventative and therapeutic measures. Existing clinical interventions have limitations, such as slow recovery rates, high costs, and inefficient drug delivery methods. Therefore, exploring alternative avenues to develop effective wound-healing treatments is essential. Nature offers a vast array of resources in the form of secondary metabolites, notably polyphenols, known for their antimicrobial, anti-inflammatory, antioxidant, glucose-regulating, and cell growth-promoting properties. Additionally, nanoparticles synthesized through environmentally friendly methods hold promise for wound healing applications in diabetic and non-diabetic conditions. This review provides a comprehensive discussion and summary of the potential wound-healing abilities of specific natural polyphenols and their nanoparticles. It explores the mechanisms of action underlying their efficacy and presents effective formulations for promoting wound-healing activity.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
24
|
Movahedi F, Nirmal N, Wang P, Jin H, Grøndahl L, Li L. Recent advances in essential oils and their nanoformulations for poultry feed. J Anim Sci Biotechnol 2024; 15:110. [PMID: 39123220 PMCID: PMC11316336 DOI: 10.1186/s40104-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development. Essential oils (EOs), as natural, plant-derived compounds, have demonstrated antimicrobial and antioxidant properties. EOs may potentially improve poultry health and growth performance when included in poultry feed. Nevertheless, the incorporation of EOs as nutritional additives is hindered by their high volatility, low water solubility, poor intestinal absorption, and sensitivity to environmental conditions. Recently, nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges, improving the stability and bioavailability of EOs, and enabling targeted delivery in poultry feed. This review provides an overview of the antioxidant and antibacterial properties of EOs, the current limitations of their applications in poultry feed, and the recent advancements in nano-engineering to overcome these limitations. Furthermore, we outline the potential future research direction on EO nanoformulations, emphasizing their promising role in advancing sustainable poultry nutrition.Highlights• Essential oils (EOs) are known as powerful antioxidants and antibacterial agents.• EOs have a high potential to replace antibiotics as feed additives.• Nanoformulations of EOs have shown improved bioactivity and storage stability of EOs.• Nanoformulation promotes the bioavailability and gut adsorption of EOs as feed additives.
Collapse
Affiliation(s)
- Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pengyuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hongping Jin
- JECHO Biopharmaceuticals Co., Ltd., No. 2633, Zhongbin Avenue, Sino-Singapore Tianjin Eco-city, Binhai New Area, Tianjin, China
| | - Lisbeth Grøndahl
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
25
|
Yang C, Chen J, Zhang Y, Huang J, Wang H, Chen J. Non-targeted metabolomics reveals the taste variations during Baccaurea ramiflora Lour. fruit maturation. FRONTIERS IN PLANT SCIENCE 2024; 15:1420231. [PMID: 39040510 PMCID: PMC11260711 DOI: 10.3389/fpls.2024.1420231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024]
Abstract
Baccaurea ramiflora Lour. is a new kind of underutilized wild fruit tree; the metabolic reasons for its fruit flavor changes are not yet clear. In this study, the pink flesh of this excellent tasting fruit (BR) was used to reveal the metabolic causes of taste variations through five developmental stages. We identified 154 common differential metabolites of different developmental stages based on non-targeted metabolomics analysis. The accumulation of sugar and fatty acids increased significantly after 73 days, while citric acid decreased significantly. Flesh color accumulation mainly occurred 53 days ago, and vitamin accumulation occurred after 93 days. Interestingly, L-sorbose and 5-hydroxyindole-3-acetic acid were positively correlated with the sugar-acid ratio but negatively correlated with titratable acids. It indicated that L-sorbose and 5-hydroxyindole-3-acetic acid may be taste biomarkers of BR B. ramiflora. The results provided new metabolic lines of evidence for the taste variation during the ripening process of B. ramiflora.
Collapse
Affiliation(s)
- Chongcheng Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jiaqi Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yang Zhang
- Organic Biology Group, Jiangxi Ganzhou Eco-environmental Monitoring Center, Ganzhou, China
| | - Jianjian Huang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Huachen Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
26
|
Wang Y, Zhang M, Bao L, Long J, Cui X, Zheng Z, Zhao X, Huang Y, Jiao F, Su C, Qian Y. Metabolomic and transcriptomic analysis of flavonoids biosynthesis mechanisms in mulberry fruit (Hongguo 2) under exogenous hormone treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108773. [PMID: 38820912 DOI: 10.1016/j.plaphy.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
The mulberry fruit is prized for its superior nutrition value and abundant color due to its high flavone content. To enhance comprehension of flavone biogenesis induced by external hormones, we sprayed exogenous ethylene (ETH), indoleacetic acid (IAA) and spermine (SPM) on mulberry fruit (Hongguo 2) during its color-changed period. The levels of anthocyanin, titratable acid, soluble sugar and endogenous hormones were determined after hormone treatment, integrated transcriptome and metabolome analysis were performed for mechanism exploration. Our results indicated that exogenous ETH, SPM, and IAA play important roles in mulberry ripening, including acid reduction, sugar increase and flavonoid synthesis.
Collapse
Affiliation(s)
- Yifang Wang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaopeng Cui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zelin Zheng
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoxiao Zhao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yanzhen Huang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
27
|
Bayati M, Lund MN, Tiwari BK, Poojary MM. Chemical and physical changes induced by cold plasma treatment of foods: A critical review. Compr Rev Food Sci Food Saf 2024; 23:e13376. [PMID: 38923698 DOI: 10.1111/1541-4337.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Cold plasma treatment is an innovative technology in the food processing and preservation sectors. It is primarily employed to deactivate microorganisms and enzymes without heat and chemical additives; hence, it is often termed a "clean and green" technology. However, food quality and safety challenges may arise during cold plasma processing due to potential chemical interactions between the plasma reactive species and food components. This review aims to consolidate and discuss data on the impact of cold plasma on the chemical constituents and physical and functional properties of major food products, including dairy, meat, nuts, fruits, vegetables, and grains. We emphasize how cold plasma induces chemical modification of key food components, such as water, proteins, lipids, carbohydrates, vitamins, polyphenols, and volatile organic compounds. Additionally, we discuss changes in color, pH, and organoleptic properties induced by cold plasma treatment and their correlation with chemical modification. Current studies demonstrate that reactive oxygen and nitrogen species in cold plasma oxidize proteins, lipids, and bioactive compounds upon direct contact with the food matrix. Reductions in nutrients and bioactive compounds, including polyunsaturated fatty acids, sugars, polyphenols, and vitamins, have been observed in dairy products, vegetables, fruits, and beverages following cold plasma treatment. Furthermore, structural alterations and the generation of volatile and non-volatile oxidation products were observed, impacting the color, flavor, and texture of food products. However, the effects on dry foods, such as seeds and nuts, are comparatively less pronounced. Overall, this review highlights the drawbacks, challenges, and opportunities associated with cold plasma treatment in food processing.
Collapse
Affiliation(s)
- Mohammad Bayati
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin 15, Ireland
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
28
|
Cai Z, Huang W, Zhong J, Jin J, Wu D, Chen K. Methyl jasmonate-loaded composite biofilm sustainably alleviates chilling lignification of loquat fruit during postharvest storage. Food Chem 2024; 444:138602. [PMID: 38310778 DOI: 10.1016/j.foodchem.2024.138602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
In this work, the MeJA-loaded gelatin/pullulan/chitosan composite biofilm was prepared to inhibit the chilling lignification of the loquat fruit during storage at 0 °C. The firmness and lignin content were decreased by 89 % and 81.77 % after MeJA-loaded biofilm treatment. Malondialdehyde (MDA) production was almost completely suppressed and chilling injury of loquat fruit was significantly reduced. Enzyme activity results show that the biofilm alleviated chilling lignification mainly by inhibiting peroxidase (POD) activity in the phenylpropanoid pathway (PCCs = 0.715, with lignin content). Also, the conventional MeJA vapor treatment only alleviated lignification on day 3, but the biofilm treatment had a better and more sustained effect throughout the whole storage due to its sustained release ability. Besides, the biofilm had good mechanical properties, transparency and water vapor transmission rate. This work indicates that loading preservatives into biofilms has a promising application prospect for inhibiting the postharvest quality deterioration of fruit and vegetables.
Collapse
Affiliation(s)
- Zihan Cai
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Jiahao Zhong
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Jiayue Jin
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
29
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
30
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
31
|
Tang C, Fan Y, Wang T, Wang J, Xiao M, He M, Chang X, Li Y, Li X. Metabolomic Profiling of Floccularia luteovirens from Different Geographical Regions Proposes a Novel Perspective on Their Antioxidative Activities. Antioxidants (Basel) 2024; 13:620. [PMID: 38790725 PMCID: PMC11118160 DOI: 10.3390/antiox13050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Floccularia luteovirens, an endemic resource of the Tibetan Plateau, possesses significant medicinal and ecological values. However, the understanding of antioxidant capacity and metabolic profiling of F. luteovirens from diverse regions remains elusive due to limited resources. Therefore, to comprehensively comprehend the antioxidant capacity and metabolite diversity of F. luteovirens, we conducted a rounded analysis of its antioxidant capacity from three distinct regions using both untargeted and targeted metabolomics. Determination of antioxidant indices, such as ferric ion-reducing antioxidant power (FRAP), total phenolic content (TPC), and flavonoid content (FC), revealed the robust antioxidant capacity of F. luteovirens. QL F. luteovirens (QLFL) exhibited no significant difference compared to ZD F. luteovirens (ZDFL); however, both were significantly distinct from XH F. luteovirens (XHFL) across multiple indices. Furthermore, a positive correlation was observed between FRAP and flavonoid content. A total of 5782 metabolites were identified and chemically classified. Metabolites of F. luteovirens varied significantly at different regions and eight key differential metabolites were screened. Phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and cyanoamino acid metabolism were the main different regulatory pathways. Consequently, the disparities in the antioxidant activity of F. luteovirens may primarily be ascribed to the biosynthesis and metabolism of phenylalanine, while vanillic acid could potentially serve as a pivotal metabolite influencing the antioxidative capacity of F. luteovirens by targeted metabolomics. These findings enhance our understanding of the composition of F. luteovirens and provide valuable resources for its comprehensive utilization and targeted development.
Collapse
Affiliation(s)
- Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Yuejun Fan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Jie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China;
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Xiyun Chang
- Qinghai Institute of Health Sciences, Xining 810016, China;
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| |
Collapse
|
32
|
Zhu Z, Chen D, Sun M, Xiao M, Huang P, Ren D, Yang Y, Zhang Z, Zhao Q, Li R. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of lignan biosynthesis in Herpetospermum pedunculosum (Cucurbitaceae). BMC Genomics 2024; 25:421. [PMID: 38684979 PMCID: PMC11059704 DOI: 10.1186/s12864-024-10306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Herpetospermum pedunculosum (Ser.) C. B. Clarke is a traditional Chinese herbal medicine that heavily relies on the lignans found in its dried ripe seeds (Herpetospermum caudigerum), which have antioxidant and hepatoprotective functions. However, little is known regarding the lignan biosynthesis in H. pedunculosum. In this study, we used metabolomic (non-targeted UHPLC-MS/MS) and transcriptome (RNA-Seq) analyses to identify key metabolites and genes (both structural and regulatory) associated with lignan production during the green mature (GM) and yellow mature (YM) stages of H. pedunculosum. RESULTS The contents of 26 lignan-related metabolites and the expression of 30 genes involved in the lignan pathway differed considerably between the GM and YM stages; most of them were more highly expressed in YM than in GM. UPLC-Q-TOF/MS confirmed that three Herpetospermum-specific lignans (including herpetrione, herpetotriol, and herpetin) were found in YM, but were not detected in GM. In addition, we proposed a lignan biosynthesis pathway for H. pedunculosum based on the fundamental principles of chemistry and biosynthesis. An integrated study of the transcriptome and metabolome identified several transcription factors, including HpGAF1, HpHSFB3, and HpWOX1, that were highly correlated with the metabolism of lignan compounds during seed ripening. Furthermore, functional validation assays revealed that the enzyme 4-Coumarate: CoA ligase (4CL) catalyzes the synthesis of hydroxycinnamate CoA esters. CONCLUSION These results will deepen our understanding of seed lignan biosynthesis and establish a theoretical basis for molecular breeding of H. pedunculosum.
Collapse
Affiliation(s)
- Ziwei Zhu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, 610106, Chengdu, China
- Institute for Advanced Study, Chengdu University, 610106, Chengdu, China
| | - Daihan Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Min Sun
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, 610106, Chengdu, China
- Institute for Advanced Study, Chengdu University, 610106, Chengdu, China
| | - Maotao Xiao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, 610106, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, 610106, Chengdu, China
| | - Peng Huang
- Tibet Rhodiola Pharmaceutical Holding Company, 850000, Lhasa, China
| | - Dongsheng Ren
- Tibet Rhodiola Pharmaceutical Holding Company, 850000, Lhasa, China
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, 610106, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, 610106, Chengdu, China
| | - Zhen Zhang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, 610106, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, 610106, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, 610106, Chengdu, China.
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
- School of Food and Biological Engineering, Chengdu University, 610106, Chengdu, China.
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, 610106, Chengdu, China.
- School of Food and Biological Engineering, Chengdu University, 610106, Chengdu, China.
| |
Collapse
|
33
|
Qiu X, Wang W, Yang J, Li D, Jiao J, Wang E, Yuan H. Fulvic Acid Promotes Legume-Rhizobium Symbiosis by Stimulating Endogenous Flavonoids Synthesis and Secretion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6133-6142. [PMID: 38489511 DOI: 10.1021/acs.jafc.3c08837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Fulvic acid (FA) promotes symbiosis between legumes and rhizobia. To elucidate from the aspect of symbiosis, the effects of root irrigation of water-soluble humic materials (WSHM) or foliar spraying of its highly active component, FA, on soybean root exudates and on rhizosphere microorganisms were investigated. As a result, WSHM/FA treatments significantly altered root exudate metabolite composition, and isoflavonoids were identified as key contributors in both treatments compared to the control. Increased expression of genes related to the isoflavonoid biosynthesis were validated by RT-qPCR in both treatments, which notably elevated the synthesis of symbiotic signals genistein, daidzin, coumestrol, and biochanin A. Moreover, the WSHM/FA treatments induced a change in rhizosphere microbial community, coupled with an increase in the relative abundance of rhizobia. Our findings showed that WSHM/FA promotes symbiosis by stimulating the endogenous flavonoid synthesis and leads to rhizobia accumulation in the rhizosphere. This study provides new insights into mechanisms underlying the FA-mediated promotion of symbiosis.
Collapse
Affiliation(s)
- Xiaoqian Qiu
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenqian Wang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongmei Li
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jian Jiao
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Xiao X, Lang D, Yong J, Zhang X. Bacillus cereus G2 alleviate salt stress in Glycyrrhiza uralensis Fisch. by balancing the downstream branches of phenylpropanoids and activating flavonoid biosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116129. [PMID: 38430580 DOI: 10.1016/j.ecoenv.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
The salinity environment is one of the biggest threats to Glycyrrhiza uralensis Fisch. (G. uralensis) growth, resulting from the oxidative stress caused by excess reactive oxygen species (ROS). Flavonoids are the main pharmacodynamic composition and help maintain ROS homeostasis and mitigate oxidative damage in G. uralensis in the salinity environment. To investigate whether endophytic Bacillus cereus G2 can improve the salt-tolerance of G. uralensis through controlling flavonoid biosynthesis, the transcriptomic and physiological analysis of G. uralensis treated by G2 in the saline environment was conducted, focused on flavonoid biosynthesis-related pathways. Results uncovered that salinity inhibited flavonoids synthesis by decreasing the activities of phenylalanine ammonialyase (PAL) and 4-coumarate-CoA ligase (4CL) (42% and 39%, respectively) due to down-regulated gene Glyur000910s00020578 at substrate level, and then decreasing the activities of chalcone isomerase (CHI) and chalcone synthase (CHS) activities (50% and 42%, respectively) due to down-regulated genes Glyur006062s00044203 and Glyur000051s00003431, further decreasing isoliquiritigenin content by 53%. However, salt stress increased liquiritin content by 43%, which might be a protective mechanism of salt-treated G. uralensis seedlings. Interestingly, G2 enhanced PAL activity by 27% whereas reduced trans-cinnamate 4-monooxygenase (C4H) activity by 43% which could inhibit lignin biosynthesis but promote flavonoid biosynthesis of salt-treated G. uralensis at the substrate level. G2 decreased shikimate O-hydroxycinnamoyltransferase (HCT) activity by 35%, increased CHS activity by 54% through up-regulating the gene Glyur000051s00003431 encoding CHS, and increased CHI activity by 72%, thereby decreasing lignin (34%) and liquiritin (24%) content, but increasing isoliquiritigenin content (35%), which could mitigate oxidative damage and changed salt-tolerance mechanism of G. uralensis.
Collapse
Affiliation(s)
- Xiang Xiao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Duoyong Lang
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| |
Collapse
|
35
|
Utomo JC, Barrell HB, Kumar R, Smith J, Brant MS, De la Hoz Siegler H, Ro DK. Reconstructing curcumin biosynthesis in yeast reveals the implication of caffeoyl-shikimate esterase in phenylpropanoid metabolic flux. Metab Eng 2024; 82:286-296. [PMID: 38387678 DOI: 10.1016/j.ymben.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Curcumin is a polyphenolic natural product from the roots of turmeric (Curcuma longa). It has been a popular coloring and flavoring agent in food industries with known health benefits. The conventional phenylpropanoid pathway is known to proceed from phenylalanine via p-coumaroyl-CoA intermediate. Although hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) plays a key catalysis in the biosynthesis of phenylpropanoid products at the downstream of p-coumaric acid, a recent discovery of caffeoyl-shikimate esterase (CSE) showed that an alternative pathway exists. Here, the biosynthetic efficiency of the conventional and the alternative pathway in producing feruloyl-CoA was examined using curcumin production in yeast. A novel modular multiplex genome-edit (MMG)-CRISPR platform was developed to facilitate rapid integrations of up to eight genes into the yeast genome in two steps. Using this MMG-CRISPR platform and metabolic engineering strategies, the alternative CSE phenylpropanoid pathway consistently showed higher titers (2-19 folds) of curcumin production than the conventional pathway in engineered yeast strains. In shake flask cultures using a synthetic minimal medium without phenylalanine, the curcumin production titer reached up to 1.5 mg/L, which is three orders of magnitude (∼4800-fold) improvement over non-engineered base strain. This is the first demonstration of de novo curcumin biosynthesis in yeast. Our work shows the critical role of CSE in improving the metabolic flux in yeast towards the phenylpropanoid biosynthetic pathway. In addition, we showcased the convenience and reliability of modular multiplex CRISPR/Cas9 genome editing in constructing complex synthetic pathways in yeast.
Collapse
Affiliation(s)
- Joseph Christian Utomo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hailey Brynn Barrell
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Jessica Smith
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Maximilian Simon Brant
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
36
|
Chen Z, Wang Z, Xu W. Bacillus velezensis WB induces systemic resistance in watermelon against Fusarium wilt. PEST MANAGEMENT SCIENCE 2024; 80:1423-1434. [PMID: 37939121 DOI: 10.1002/ps.7873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Our previous findings indicated that Bacillus velezensis WB could control Fusarium wilt by changing the structure of the microbial community in the watermelon rhizosphere. However, there are few studies on its mechanism in the pathogen resistance of watermelon. Therefore, in this study, we determined the mechanism of B. velezensis WB-induced systemic resistance in watermelon against Fusarium wilt through glasshouse pot experiments. RESULTS The results showed that B. velezensis WB significantly reduced the incidence and disease index of Fusarium wilt in watermelon. B. velezensis WB can enhance the basal immunity of watermelon plants by: increasing the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POD), superoxide dismutase (SOD) and β-1,3-glucanase; accumulating lignin, salicylic acid (SA) and jasmonic acid (JA); reducing malondialdehyde (MDA) concentrations; and inducing callus deposition in watermelon plant cells. RNA-seq analysis showed that 846 watermelon genes were upregulated and 612 watermelon genes were downregulated in the WF treatment. This process led to the activation of watermelon genes associated with auxin, gibberellin, SA, ethylene and JA, and the expression of genes in the phenylalanine biosynthetic pathway was upregulated. In addition, transcription factors involved in plant resistance to pathogens, such as MYB, NAC and WRKY, were induced. Gene correlation analysis showed that Cla97C10G195840 and Cla97C02G049930 in the phenylalanine biosynthetic pathway, and Cla97C02G041360 and Cla97C10G197290 in the plant hormone signal transduction pathway showed strong correlations with other genes. CONCLUSION Our results indicated that B. velezensis WB is capable of inducing systemic resistance in watermelon against Fusarium wilt. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongnan Chen
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar, China
| | - Zhigang Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar, China
| | - Weihui Xu
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- Heilongjiang Provincial Collaborative Innovation Center of Agrobiological Preparation Industrialization, Qiqihar, China
| |
Collapse
|
37
|
Fan S, Wei X, Lü R, Feng C, Zhang Q, Lü X, Jin Y, Yan M, Yang Z. Roles of the N-terminal motif in improving the activity and soluble expression of phenylalanine ammonia lyases in Escherichia coli. Int J Biol Macromol 2024; 262:130248. [PMID: 38367782 DOI: 10.1016/j.ijbiomac.2024.130248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Phenylalanine ammonia-lyase (PAL) has various applications in fine chemical manufacturing and the pharmaceutical industry. In particular, PAL derived from Anabaena variabilis (AvPAL) is used as a therapeutic agent to the treat phenylketonuria in clinical settings. In this study, we aligned the amino acid sequences of AvPAL and PAL derived from Nostoc punctiforme (NpPAL) to obtain several mutants with enhanced activity, expression yield, and thermal stability via amino acid substitution and saturation mutagenesis at the N-terminal position. Enzyme kinetic experiments revealed that the kcat values of NpPAL-N2K, NpPAL-I3T, and NpPAL-T4L mutants were increased to 3.2-, 2.8-, and 3.3-fold that of the wild-type, respectively. Saturation mutagenesis of the fourth amino acid in AvPAL revealed that the kcat values of AvPAL-L4N, AvPAL-L4P, AvPAL-L4Q and AvPAL-L4S increased to 4.0-, 3.7-, 3.6-, and 3.2-fold, respectively. Additionally, the soluble protein yield of AvPAL-L4K increased to approximately 14 mg/L, which is approximately 3.5-fold that of AvPAL. Molecular dynamics studies further revealed that maintaining the attacking state of the reaction and N-terminal structure increased the rate of catalytic reaction and improved the solubility of proteins. These findings provide new insights for the rational design of PAL in the future.
Collapse
Affiliation(s)
- Shuai Fan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiyu Wei
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ruijie Lü
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Cuiyue Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qian Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xudong Lü
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuanyuan Jin
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China.
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
38
|
Huang X, Liu L, Qiang X, Meng Y, Li Z, Huang F. Integrated Metabolomic and Transcriptomic Profiles Provide Insights into the Mechanisms of Anthocyanin and Carotenoid Biosynthesis in Petals of Medicago sativa ssp. sativa and Medicago sativa ssp. falcata. PLANTS (BASEL, SWITZERLAND) 2024; 13:700. [PMID: 38475545 DOI: 10.3390/plants13050700] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The petals of Medicago sativa ssp. sativa and M. sativa ssp. falcata are purple and yellow, respectively. Free hybridization between M. sativa ssp. sativa and M. sativa ssp. falcata has created hybrids with various flower colors in nature. Moreover, the flower colors of alfalfa are closely correlated with yield, nutritional quality, stress tolerance and other agronomic characteristics. To elucidate the underlying mechanisms of flower color formation in M. sativa ssp. sativa and M. sativa ssp. falcata, we conducted an integrative analysis of the transcriptome and metabolome of alfalfa with three different petal colors (purple, yellow and cream). The metabolic profiles suggested that anthocyanins and carotenoids are the crucial pigments in purple and yellow flowers, respectively. A quantitative exploration of the anthocyanin and carotenoid components indicated that the accumulations of cyanidin, delphinidin, peonidin, malvidin, pelargonidin and petunidin derivatives are significantly higher in purple flowers than in cream flowers. In addition, the content of carotenes (phytoene, α-carotene and β-carotene) and xanthophylls (α-cryptoxanthin, lutein, β-cryptoxanthin, zeaxanthin, antheraxanthin and violaxanthin derivatives) was markedly higher in yellow flowers than in cream flowers. Furthermore, we found that delphinidin-3,5-O-diglucoside and lutein were the predominant pigments accumulated in purple and yellow flowers, respectively. The transcriptomic results revealed that twenty-five upregulated structural genes (one C4H, three 4CL, twelve CHS, two CHI, one F3H, one F3'H, one F3'5'H and four DFR) are involved in the accumulation of anthocyanins in purple flowers, and nine structural genes (two PSY, one ZDS, two CRTISO, two BCH, one ZEP and one ECH) exert an effect on the carotenoid biosynthesis pathway in yellow flowers. The findings of this study reveal the underlying mechanisms of anthocyanin and carotenoid biosynthesis in alfalfa with three classic flower colors.
Collapse
Affiliation(s)
- Xiuzheng Huang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Lei Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Xiaojing Qiang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Yuanfa Meng
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Fan Huang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| |
Collapse
|
39
|
Wang Y, Jiang W, Li C, Wang Z, Lu C, Cheng J, Wei S, Yang J, Yang Q. Integrated transcriptomic and metabolomic analyses elucidate the mechanism of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress. BMC PLANT BIOLOGY 2024; 24:132. [PMID: 38383312 PMCID: PMC10880279 DOI: 10.1186/s12870-024-04804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Seed propagation is the main method of mulberry expansion in China, an important economic forest species. However, seed germination is the most sensitive stage to various abiotic stresses, especially salinity stress. To reveal the molecular regulatory mechanism of mulberry seed germination under salt stress, flavonoid metabolomics and transcriptomics analyses were performed on mulberry seeds germinated under 50 and 100 mmol/L NaCl stress. Analysis of the flavonoid metabolome revealed that a total of 145 differential flavonoid metabolites (DFMs) were classified into 9 groups, 40 flavonols, 32 flavones, 16 chalcones and 14 flavanones. Among them, 61.4% (89) of the DFMs accumulated continuously with increasing salt concentration, reaching the highest level at a 100 mmol/L salt concentration; these DFMs included quercetin-3-O-glucoside (isoquercitrin), kaempferol (3,5,7,4'-tetrahydroxyflavone), quercetin-7-O-glucoside, taxifolin (dihydroquercetin) and apigenin (4',5,7-trihydroxyflavone), indicating that these flavonoids may be key metabolites involved in the response to salt stress. Transcriptional analysis identified a total of 3055 differentially expressed genes (DEGs), most of which were enriched in flavonoid biosynthesis (ko00941), phenylpropanoid biosynthesis (ko00940) and biosynthesis of secondary metabolites (ko01110). Combined analysis of flavonoid metabolomic and transcriptomic data indicated that phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) and anthocyanidin reductase (ANR) were the key genes involved in flavonoid accumulation during mulberry seed germination under 50 and 100 mmol/L NaCl stress. In addition, three transcription factors, MYB, bHLH and NAC, were involved in the regulation of flavonoid accumulation under salt stress. The results of quantitative real-time PCR (qRT‒PCR) validation showed that the expression levels of 11 DEGs, including 7 genes involved in flavonoid biosynthesis, under different salt concentrations were consistent with the transcriptomic data, and parallel reaction monitoring (PRM) results showed that the expression levels of 6 key enzymes (proteins) involved in flavonoid synthesis were consistent with the accumulation of flavonoids. This study provides a new perspective for investigating the regulatory role of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress at different concentrations.
Collapse
Affiliation(s)
- Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Chenlei Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Can Lu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Junsen Cheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Shanglin Wei
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiasong Yang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Qiang Yang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| |
Collapse
|
40
|
Chai P, Cui M, Zhao Q, Chen L, Guo T, Guo J, Wu C, Du P, Liu H, Xu J, Zheng Z, Huang B, Dong W, Han S, Zhang X. Genome-Wide Characterization of the Phenylalanine Ammonia-Lyase Gene Family and Their Potential Roles in Response to Aspergillus flavus L. Infection in Cultivated Peanut ( Arachis hypogaea L.). Genes (Basel) 2024; 15:265. [PMID: 38540324 PMCID: PMC10970321 DOI: 10.3390/genes15030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 06/15/2024] Open
Abstract
Phenylalanine ammonia-lyase (PAL) is an essential enzyme in the phenylpropanoid pathway, in which numerous aromatic intermediate metabolites play significant roles in plant growth, adaptation, and disease resistance. Cultivated peanuts are highly susceptible to Aspergillus flavus L. infection. Although PAL genes have been characterized in various major crops, no systematic studies have been conducted in cultivated peanuts, especially in response to A. flavus infection. In the present study, a systematic genome-wide analysis was conducted to identify PAL genes in the Arachis hypogaea L. genome. Ten AhPAL genes were distributed unevenly on nine A. hypogaea chromosomes. Based on phylogenetic analysis, the AhPAL proteins were classified into three groups. Structural and conserved motif analysis of PAL genes in A. hypogaea revealed that all peanut PAL genes contained one intron and ten motifs in the conserved domains. Furthermore, synteny analysis indicated that the ten AhPAL genes could be categorized into five pairs and that each AhPAL gene had a homologous gene in the wild-type peanut. Cis-element analysis revealed that the promoter region of the AhPAL gene family was rich in stress- and hormone-related elements. Expression analysis indicated that genes from Group I (AhPAL1 and AhPAL2), which had large number of ABRE, WUN, and ARE elements in the promoter, played a strong role in response to A. flavus stress.
Collapse
Affiliation(s)
- Pengpei Chai
- The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China; (P.C.); (M.C.); (Q.Z.); (T.G.); (J.G.); (C.W.); (P.D.)
| | - Mengjie Cui
- The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China; (P.C.); (M.C.); (Q.Z.); (T.G.); (J.G.); (C.W.); (P.D.)
| | - Qi Zhao
- The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China; (P.C.); (M.C.); (Q.Z.); (T.G.); (J.G.); (C.W.); (P.D.)
| | - Linjie Chen
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China; (L.C.); (H.L.); (J.X.); (Z.Z.); (B.H.); (W.D.)
| | - Tengda Guo
- The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China; (P.C.); (M.C.); (Q.Z.); (T.G.); (J.G.); (C.W.); (P.D.)
| | - Jingkun Guo
- The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China; (P.C.); (M.C.); (Q.Z.); (T.G.); (J.G.); (C.W.); (P.D.)
| | - Chendi Wu
- The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China; (P.C.); (M.C.); (Q.Z.); (T.G.); (J.G.); (C.W.); (P.D.)
| | - Pei Du
- The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China; (P.C.); (M.C.); (Q.Z.); (T.G.); (J.G.); (C.W.); (P.D.)
| | - Hua Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China; (L.C.); (H.L.); (J.X.); (Z.Z.); (B.H.); (W.D.)
| | - Jing Xu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China; (L.C.); (H.L.); (J.X.); (Z.Z.); (B.H.); (W.D.)
| | - Zheng Zheng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China; (L.C.); (H.L.); (J.X.); (Z.Z.); (B.H.); (W.D.)
| | - Bingyan Huang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China; (L.C.); (H.L.); (J.X.); (Z.Z.); (B.H.); (W.D.)
| | - Wenzhao Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China; (L.C.); (H.L.); (J.X.); (Z.Z.); (B.H.); (W.D.)
| | - Suoyi Han
- The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China; (P.C.); (M.C.); (Q.Z.); (T.G.); (J.G.); (C.W.); (P.D.)
| | - Xinyou Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China; (L.C.); (H.L.); (J.X.); (Z.Z.); (B.H.); (W.D.)
| |
Collapse
|
41
|
Kato-Noguchi H, Takahashi Y, Tojo S, Teruya T. Isolation and Identification of Allelopathic Substances from Forsythia suspensa Leaves, and Their Metabolism and Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:575. [PMID: 38475422 DOI: 10.3390/plants13050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The fruit of Forsythia suspensa (Thunb.) Vahl has been used in traditional Chinese medicine as "Forsythiae fructus". The species is also grown in parks and gardens, and on streets and building lots, as an ornamental plant, but it requires pruning. In this study, the allelopathic activity and allelopathic substances in the leaves of pruned branches of F. suspensa were investigated to determine any potential application. The leaf extracts of F. suspensa showed growth inhibitory activity against three weed species; Echinochloa crus-galli, Lolium multiflorum, and Vulpia myuros. Two allelopathic substances in the extracts were isolated through the bioassay-guided purification process, and identified as (-)-matairesinol and (-)-arctigenin. (-)-Matairesinol and (-)-arctigenin, which showed significant growth inhibitory activity at concentrations greater than 0.3 mM in vitro. The inhibitory activity of (-)-arctigenin was greater than that of (-)-matairesinol. However, both compounds were more active than (+)-pinolesinol which is their precursor in the biosynthetic pathway. The investigation suggests that F. suspensa leaves are allelopathic, and (-)-matairesinol and (-)-arctigenin may contribute to the growth inhibitory activities. Therefore, the leaves of the pruned branches can be applied as a weed management strategy in some agricultural practices such as using the leaf extracts in a foliar spray and the leaves in a soil mixture, thereby reducing the dependency on synthetic herbicides in the crop cultivation and contributing to developing eco-friendly agriculture.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Yuga Takahashi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Shunya Tojo
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
42
|
Metwally RA, Soliman SA, Abdalla H, Abdelhameed RE. Trichoderma cf. asperellum and plant-based titanium dioxide nanoparticles initiate morphological and biochemical modifications in Hordeum vulgare L. against Bipolaris sorokiniana. BMC PLANT BIOLOGY 2024; 24:118. [PMID: 38368386 PMCID: PMC10873961 DOI: 10.1186/s12870-024-04785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
43
|
Tavvabi-Kashani N, Hasanpour M, Baradaran Rahimi V, Vahdati-Mashhadian N, Askari VR. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024; 238:107607. [PMID: 38191032 DOI: 10.1016/j.toxicon.2024.107607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.
Collapse
Affiliation(s)
- Negin Tavvabi-Kashani
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Barman R, Kumar Bora P, Saikia J, Konwar P, Sarkar A, Kemprai P, Proteem Saikia S, Haldar S, Slater A, Banik D. Hypothetical biosynthetic pathways of pharmaceutically potential hallucinogenic metabolites in Myristicaceae, mechanistic convergence and co-evolutionary trends in plants and humans. PHYTOCHEMISTRY 2024; 218:113928. [PMID: 38035973 DOI: 10.1016/j.phytochem.2023.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
The family Myristicaceae harbour mind-altering phenylpropanoids like myristicin, elemicin, safrole, tryptamine derivatives such as N,N-dimethyltryptamine (DMT) and 5-methoxy N,N-dimethyltryptamine (5-MeO-DMT) and β-carbolines such as 1-methyl-6-methoxy-dihydro-β-carboline and 2-methyl-6-methoxy-1,2,3,4-tetrahydro-β-carboline. This study aimed to systematically review and propose the hypothetical biosynthetic pathways of hallucinogenic metabolites of Myristicaceae which have the potential to be used pharmaceutically. Relevant publications were retrieved from online databases, including Google Scholar, PubMed Central, Science Direct and the distribution of the hallucinogens among the family was compiled. The review revealed that the biosynthesis of serotonin in plants was catalysed by tryptamine 5-hydroxylase (T5H) and tryptophan 5-hydroxylase (TPH), whereas in invertebrates and vertebrates only by tryptophan 5-hydroxylase (TPH). Indolethylamine-N-methyltransferase catalyses the biosynthesis of DMT in plants and the brains of humans and other mammals. Caffeic acid 3-O-methyltransferase catalyses the biosynthesis of both phenylpropanoids and tryptamines in plants. All the hallucinogenic markers exhibited neuropsychiatric effects in humans as mechanistic convergence. The review noted that DMT, 5-MeO-DMT, and β-carbolines were natural protectants against both plant stress and neurodegenerative human ailments. The protein sequence data of tryptophan 5-hydroxylase and tryptamine 5-hydroxylase retrieved from NCBI showed a co-evolutionary relationship in between animals and plants on the phylogenetic framework of a Maximum Parsimony tree. The review also demonstrates that the biosynthesis of serotonin, DMT, 5-MeO-DMT, 5-hydroxy dimethyltryptamine, and β-carbolines in plants, as well as endogenous secretion of these compounds in the brain and blood of humans and rodents, reflects co-evolutionary mutualism in plants and humans.
Collapse
Affiliation(s)
- Rubi Barman
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Jadumoni Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Parthapratim Konwar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Aditya Sarkar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Adrian Slater
- Faculty of School of Health and Allied Sciences, Biomolecular Technology Group, Hawthorn Building HB1.12, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India.
| |
Collapse
|
45
|
Kaur A, Yadav VG, Pawar SV, Sembi JK. Insights to Phenylalanine Ammonia Lyase (PAL) and Secondary Metabolism in Orchids: An in silico Approach. Biochem Genet 2024; 62:413-435. [PMID: 37358673 DOI: 10.1007/s10528-023-10428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
The phenylalanine ammonia lyase (PAL) catalyses the first step of phenylpropanoid metabolic pathway which leads to the biosynthesis of a diverse group of secondary metabolites. Orchids serve as a rich source of metabolites and the availability of genome or transcriptome for selected orchid species provides an opportunity to analyse the PAL genes in orchids. In the present study, 21 PAL genes were characterized using bioinformatics tools in nine orchid species (Apostasia shenzhenica, Cypripedium formosanum, Dendrobium catenatum, Phalaenopsis aphrodite, Phalaenopsis bellina, Phalaenopsis equestris, Phalaenopsis lueddemanniana, Phalaenopsis modesta and Phalaenopsis schilleriana). Multiple sequence alignment confirmed the presence of PAL-specific conserved domains (N-terminal, MIO, core, shielding and C-terminal domain). All these proteins were predicted to be hydrophobic in nature and to have cytoplasmic localisation. Structural modelling depicted the presence of alpha helices, extended strands, beta turns and random coils in their structure. Ala-Ser-Gly triad known for substrate binding and catalysis of MIO-domain was found to be completely conserved in all the proteins. Phylogenetic study showed that the PALs of pteridophytes, gymnosperms and angiosperms clustered together in separate clades. Expression profiling showed tissue-specific expression for all the 21 PAL genes in the various reproductive and vegetative tissues which suggested their diverse role in growth and development. This study provides insights to the molecular characterization of PAL genes which may help in developing biotechnological strategies to enhance the synthesis of phenylpropanoids in orchids and other heterologous systems for pharmaceutical applications.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Vikramaditya G Yadav
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
46
|
Li S, Dong Y, Li D, Shi S, Zhao N, Liao J, Liu Y, Chen H. Eggplant transcription factor SmMYB5 integrates jasmonate and light signaling during anthocyanin biosynthesis. PLANT PHYSIOLOGY 2024; 194:1139-1165. [PMID: 37815242 DOI: 10.1093/plphys/kiad531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 10/11/2023]
Abstract
Low light conditions severely suppress anthocyanin synthesis in fruit skins, leading to compromised fruit quality in eggplant (Solanum melongena L.) production. In this study, we found that exogenous methyl-jasmonate (MeJA) application can effectively rescue the poor coloration of the eggplant pericarp under low light conditions. However, the regulatory relationship between jasmonate and light signaling for regulating anthocyanin synthesis remains unclear. Here, we identified a JA response factor, SmMYB5, as an anthocyanin positive regulator by applying RNA-sequencing and characterization of transgenic plants. Firstly, we resolved that SmMYB5 can interact with TRANSPARENT TESTA8 (SmTT8), an anthocyanin-promoted BASIC HELIX-LOOP-HELIX (bHLH) transcription factor, to form the SmMYB5-SmTT8 complex and activate CHALCONE SYNTHASE (SmCHS), FLAVANONE-3-HYDROXYLASE (SmF3H), and ANTHOCYANIN SYNTHASE (SmANS) promoters by direct binding. Secondly, we revealed that JA signaling repressors JASMONATE ZIM DOMAIN5 (SmJAZ5) and SmJAZ10 can interfere with the stability and transcriptional activity of SmMYB5-SmTT8 by interacting with SmMYB5. JA can partially rescue the transcriptional activation of SmF3H and SmANS promoters by inducing SmJAZ5/10 degradation. Thirdly, we demonstrated that the protein abundance of SmMYB5 is regulated by light. CONSTITUTIVELY PHOTOMORPHOGENIC1 (SmCOP1) interacts with SmMYB5 to trigger SmMYB5 degradation via the 26S proteasome pathway. Finally, we delineated a light-dependent JA-SmMYB5 signaling pathway that promotes anthocyanin synthesis in eggplant fruit skins. These results provide insights into the mechanism of the integration of JA and light signals in regulating secondary metabolite synthesis in plants.
Collapse
Affiliation(s)
- Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanxiao Dong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suli Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Na Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jielei Liao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
47
|
Peng Y, Wang Z, Li M, Wang T, Su Y. Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC PLANT BIOLOGY 2024; 24:73. [PMID: 38273309 PMCID: PMC10811885 DOI: 10.1186/s12870-024-04746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.
Collapse
Affiliation(s)
- Yang Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Wang
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
48
|
Zhu Z, Chen R, Zhang L. Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Nat Prod Rep 2024; 41:6-24. [PMID: 37807808 DOI: 10.1039/d3np00012e] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Covering: 2000 to 2023Simple phenylpropanoids are a large group of natural products with primary C6-C3 skeletons. They are not only important biomolecules for plant growth but also crucial chemicals for high-value industries, including fragrances, nutraceuticals, biomaterials, and pharmaceuticals. However, with the growing global demand for simple phenylpropanoids, direct plant extraction or chemical synthesis often struggles to meet current needs in terms of yield, titre, cost, and environmental impact. Benefiting from the rapid development of metabolic engineering and synthetic biology, microbial production of natural products from inexpensive and renewable sources provides a feasible solution for sustainable supply. This review outlines the biological activities of simple phenylpropanoids, compares their biosynthetic pathways in different species (plants, bacteria, and fungi), and summarises key research on the microbial production of simple phenylpropanoids over the last decade, with a focus on engineering strategies that seem to hold most potential for further development. Moreover, constructive solutions to the current challenges and future perspectives for industrial production of phenylpropanoids are presented.
Collapse
Affiliation(s)
- Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China
- Innovative Drug R&D Centre, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
49
|
Fonseca-García C, Pettinga D, Wilson A, Elmore JR, McClure R, Atim J, Pedraza J, Hutmacher R, Turumtay H, Tian Y, Eudes A, Scheller HV, Egbert RG, Coleman-Derr D. Defined synthetic microbial communities colonize and benefit field-grown sorghum. THE ISME JOURNAL 2024; 18:wrae126. [PMID: 38984785 PMCID: PMC11410050 DOI: 10.1093/ismejo/wrae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
The rhizosphere constitutes a dynamic interface between plant hosts and their associated microbial communities. Despite the acknowledged potential for enhancing plant fitness by manipulating the rhizosphere, the engineering of the rhizosphere microbiome through inoculation has posed significant challenges. These challenges are thought to arise from the competitive microbial ecosystem where introduced microbes must survive, and the absence of adaptation to the specific metabolic and environmental demands of the rhizosphere. Here, we engineered a synthetic rhizosphere community (SRC1) with the anticipation that it would exhibit a selective advantage in colonizing the host Sorghum bicolor, thereby potentially fostering its growth. SRC1 was assembled from bacterial isolates identified either for their potential role in community cohesion through network analysis or for their ability to benefit from host-specific exudate compounds. The growth performance of SRC1 was assessed in vitro on solid media, in planta under gnotobiotic laboratory conditions, and in the field. Our findings reveal that SRC1 cohesion is most robust when cultivated in the presence of the plant host under laboratory conditions, with lineages being lost from the community when grown either in vitro or in a native field setting. We establish that SRC1 effectively promotes the growth of both above- and below-ground plant phenotypes in both laboratory and native field contexts. Furthermore, in laboratory conditions, these growth enhancements correlate with the transcriptional dampening of lignin biosynthesis in the host. Collectively, these results underscore the potential utility of synthetic microbial communities for modulating crop performance in controlled and native environments alike.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| | - Dean Pettinga
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| | - Andrew Wilson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Joshua R Elmore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ryan McClure
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jackie Atim
- University of California Agriculture and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, United States
| | - Julie Pedraza
- University of California Agriculture and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, United States
| | - Robert Hutmacher
- West Side Research and Extension Center, Five Points, CA 93624, United States
| | - Halbay Turumtay
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Karadeniz Technical University, Department of Energy System Engineering, Trabzon, 61830, Turkey
| | - Yang Tian
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aymerick Eudes
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Robert G Egbert
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Devin Coleman-Derr
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
50
|
Kumar GA, Kumar S, Bhardwaj R, Swapnil P, Meena M, Seth CS, Yadav A. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions. FRONTIERS IN PLANT SCIENCE 2024; 14:1297706. [PMID: 38250451 PMCID: PMC10796613 DOI: 10.3389/fpls.2023.1297706] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
The rhizosphere consists of a plethora of microbes, interacting with each other as well as with the plants present in proximity. The root exudates consist of a variety of secondary metabolites such as strigolactones and other phenolic compounds such as coumarin that helps in facilitating communication and forming associations with beneficial microbes in the rhizosphere. Among different secondary metabolites flavonoids (natural polyphenolic compounds) continuously increasing attention in scientific fields for showing several slews of biological activities. Flavonoids possess a benzo-γ-pyrone skeleton and several classes of flavonoids have been reported on the basis of their basic structure such as flavanones, flavonols, anthocyanins, etc. The mutualistic association between plant growth-promoting rhizobacteria (PGPR) and plants have been reported to help the host plants in surviving various biotic and abiotic stresses such as low nitrogen and phosphorus, drought and salinity stress, pathogen attack, and herbivory. This review sheds light upon one such component of root exudate known as flavonoids, which is well known for nodulation in legume plants. Apart from the well-known role in inducing nodulation in legumes, this group of compounds has anti-microbial and antifungal properties helping in establishing defensive mechanisms and playing a major role in forming mycorrhizal associations for the enhanced acquisition of nutrients such as iron and phosphorus. Further, this review highlights the role of flavonoids in plants for recruiting non-mutualistic microbes under stress and other important aspects regarding recent findings on the functions of this secondary metabolite in guiding the plant-microbe interaction and how organic matter affects its functionality in soil.
Collapse
Affiliation(s)
- Gokul Anil Kumar
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | - Rupesh Bhardwaj
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Prashant Swapnil
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | | | - Ankush Yadav
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| |
Collapse
|