1
|
Zheng F, Chen L, Zhang P, Zhou J, Lu X, Tian W. Carbohydrate polymers exhibit great potential as effective elicitors in organic agriculture: A review. Carbohydr Polym 2019; 230:115637. [PMID: 31887887 DOI: 10.1016/j.carbpol.2019.115637] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2022]
Abstract
Some carbohydrate polymers, usually oligosaccharides or polysaccharides, have great potential as an elicitor of plant defense. However, due to the complexity and diversity of poly- and oligosaccharide structure, the molecular mechanisms and structure-activity relationships of carbohydrate elicitors are still not well understood, which hinders the application of carbohydrate elicitors in agriculture. This review introduces the mechanisms of carbohydrate elicitor perception and signaling in plants. The structure and activity relationships of main poly- and oligosaccharides studied for the control of plant diseases are discussed and summarized. Additionally, the effects of carbohydrate elicitors on the secondary metabolite production are also summarized.
Collapse
Affiliation(s)
- Fang Zheng
- School of Forestry and Bio-technology, Zhejiang Agriculture and Forestry University, Lin'an, 311300, Zhejiang, China.
| | - Lei Chen
- School of Forestry and Bio-technology, Zhejiang Agriculture and Forestry University, Lin'an, 311300, Zhejiang, China
| | - Peifeng Zhang
- School of Forestry and Bio-technology, Zhejiang Agriculture and Forestry University, Lin'an, 311300, Zhejiang, China
| | - Jingqi Zhou
- School of Forestry and Bio-technology, Zhejiang Agriculture and Forestry University, Lin'an, 311300, Zhejiang, China
| | - Xiaofang Lu
- School of Forestry and Bio-technology, Zhejiang Agriculture and Forestry University, Lin'an, 311300, Zhejiang, China
| | - Wei Tian
- School of Forestry and Bio-technology, Zhejiang Agriculture and Forestry University, Lin'an, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Gaid M, Grosch JH, Möller S, Beerhues L, Krull R. Toward enhanced hyperforin production in St. John's wort root cultures. Eng Life Sci 2019; 19:916-930. [PMID: 32624982 DOI: 10.1002/elsc.201900043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
During the past decades, several trials targeted a stable, sustainable and economic production of St. John's wort (Hypericum perforatum) extract. The value of this extract stems from its use to treat depression and skin irritation due to its hyperforin content. Previously, hyperforin-forming in vitro root cultures were established. Here, detailed growth and production kinetics have been analyzed over 40 days of cultivation. In the first 10 days, sucrose was completely hydrolyzed to glucose and fructose. The ammonium consumption supported the increase in the biomass and hyperforin production. When sucrose was replaced with glucose/fructose, the linear growth phase started 6 days earlier and resulted in a higher space-time-yield. The maximum hyperforin production was 0.82 mg L-1 day-1, which was 67 % higher than in the sucrose-supplemented standard cultivation. Buffering the sucrose-supplemented medium with phosphate caused a 2.7-fold increase in the product to biomass yield coefficient. However, the combination of monosaccharides and buffering conditions did not cause an appreciable improvements in the production performance of the shake flask approaches. A potential scalability from flask to lab-scale stirred bioreactors has been demonstrated. The results obtained offer a basis for a scalable production of hyperforin and a sustainable source for a tissue culture-based phytomedicine.
Collapse
Affiliation(s)
- Mariam Gaid
- Institute of Pharmaceutical Biology Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| | - Steve Möller
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - Rainer Krull
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
3
|
Tresch M, Mevissen M, Ayrle H, Melzig M, Roosje P, Walkenhorst M. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet Res 2019; 15:174. [PMID: 31133058 PMCID: PMC6537371 DOI: 10.1186/s12917-019-1854-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background Medicinal plants have been used traditionally since centuries for wound care and treatment of skin diseases both in human and animals. Skin diseases are one of the most common reasons for owners to take their dog to the veterinarian. The demands for treatment and prophylaxis of these diseases are broad. A wide range of bacteria including antibiotic-resistant bacteria can be involved, making the treatment challenging and bear an anthropo-zoonotic potential. The aim of this review is to systematically evaluate based on recent scientific literature, the potential of four medicinal plants to enrich the therapeutic options in pyoderma, canine atopic dermatitis, otitis externa, wounds and dermatophytosis in dogs. Results Based on four books and a survey among veterinarians specialized in phytotherapy, four medicinal plants were chosen as the subject of this systematic review: Calendula officinalis L. (Marigold), Hypericum perforatum L. agg. (St. John’s Wort), Matricaria chamomilla L. (syn. Matricaria recutita L., Chamomile) and Salvia officinalis L. (Sage). According to the PRISMA statement through literature research on two online databases a total of 8295 publications was screened and narrowed down to a final 138 publications for which full-text documents were analyzed for its content resulting in a total of 145 references (21 clinical, 24 in vivo and 100 in vitro references). Conclusions All four plants were proven to have antibacterial and antifungal effects of a rather broad spectrum including antibiotic-resistant bacteria. This makes them an interesting new option for the treatment of pyoderma, otitis externa, infected wounds and dermatophytosis. Marigold, St. John’s Wort and Chamomile showed wound-healing properties and are thus promising candidates in line to fill the therapeutic gap in canine wound-healing agents. St. John’s Wort and Chamomile also showed anti-inflammatory and other beneficial effects on healthy skin. Due to the wide range of beneficial effects of these medicinal plants, they should be taken into account for the treatment of dermatologic diseases in dogs at least in future clinical research. Electronic supplementary material The online version of this article (10.1186/s12917-019-1854-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milena Tresch
- Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Meike Mevissen
- Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Hannah Ayrle
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postbox 219, 5070, Frick, Switzerland
| | - Matthias Melzig
- Dahlem Centre of Plant Sciences, Institute of Pharmacy, Freie Universität Berlin, Koenigin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Michael Walkenhorst
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postbox 219, 5070, Frick, Switzerland.
| |
Collapse
|
4
|
Badiali C, De Angelis G, Simonetti G, Brasili E, Tobaruela EDC, Purgatto E, Yin H, Valletta A, Pasqua G. Chitosan oligosaccharides affect xanthone and VOC biosynthesis in Hypericum perforatum root cultures and enhance the antifungal activity of root extracts. PLANT CELL REPORTS 2018; 37:1471-1484. [PMID: 29955918 DOI: 10.1007/s00299-018-2317-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Water-soluble chitosan oligosaccharides (COS) affect xanthone and volatile organic compound content, as well as antifungal activity against human pathogenic fungi of extracts obtained from Hypericum perforatum root cultures. Several studies have demonstrated the elicitor power of chitosan on xanthone biosynthesis in root cultures of H. perforatum. One of the major limitations to the use of chitosan, both for basic and applied research, is the need to use acidified water for solubilization. To overcome this problem, the elicitor effect of water-soluble COS on the biosynthesis of both xanthones and volatile organic compounds (VOCs) was evaluated in the present study. The analysis of xanthones and VOCs was performed by HPLC and GC-MS headspace analysis. The obtained results showed that COS are very effective in enhancing xanthone biosynthesis. With 400 mg L-1 COS, a xanthone content of about 30 mg g-1 DW was obtained. The antifungal activity of extracts obtained with 400 mg L-1 COS was the highest, with MIC50 of 32 µg mL-1 against Candida albicans and 32-64 µg mL-1 against dermatophytes, depending on the microorganism. Histochemical investigations suggested the accumulation of isoprenoids in the secretory ducts of H. perforatum roots. The presence of monoterpenes and sesquiterpenes was confirmed by the headspace analysis. Other volatile hydrocarbons have been identified. The biosynthesis of most VOCs showed significant changes in response to COS, suggesting their involvement in plant-fungus interactions.
Collapse
Affiliation(s)
- Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giulia De Angelis
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giovanna Simonetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Department of Food Sciences and Experimental Nutrition/FORC-Food Research Center, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Eric de Castro Tobaruela
- Department of Food Sciences and Experimental Nutrition/FORC-Food Research Center, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Eduardo Purgatto
- Department of Food Sciences and Experimental Nutrition/FORC-Food Research Center, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
5
|
Tocci N, Gaid M, Kaftan F, Belkheir AK, Belhadj I, Liu B, Svatoš A, Hänsch R, Pasqua G, Beerhues L. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. THE NEW PHYTOLOGIST 2018; 217:1099-1112. [PMID: 29210088 DOI: 10.1111/nph.14929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/20/2017] [Indexed: 05/09/2023]
Abstract
Xanthones are specialized metabolites with antimicrobial properties, which accumulate in roots of Hypericum perforatum. This medicinal plant provides widely taken remedies for depressive episodes and skin disorders. Owing to the array of pharmacological activities, xanthone derivatives attract attention for drug design. Little is known about the sites of biosynthesis and accumulation of xanthones in roots. Xanthone biosynthesis is localized at the transcript, protein, and product levels using in situ mRNA hybridization, indirect immunofluorescence detection, and high lateral and mass resolution mass spectrometry imaging (AP-SMALDI-FT-Orbitrap MSI), respectively. The carbon skeleton of xanthones is formed by benzophenone synthase (BPS), for which a cDNA was cloned from root cultures of H. perforatum var. angustifolium. Both the BPS protein and the BPS transcripts are localized to the exodermis and the endodermis of roots. The xanthone compounds as the BPS products are detected in the same tissues. The exodermis and the endodermis, which are the outermost and innermost cell layers of the root cortex, respectively, are not only highly specialized barriers for controlling the passage of water and solutes but also preformed lines of defence against soilborne pathogens and predators.
Collapse
Affiliation(s)
- Noemi Tocci
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Filip Kaftan
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Asma K Belkheir
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Ines Belhadj
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Benye Liu
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, 38106, Braunschweig, Germany
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| |
Collapse
|
6
|
Valletta A, De Angelis G, Badiali C, Brasili E, Miccheli A, Di Cocco ME, Pasqua G. Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. PLANT CELL REPORTS 2016; 35:1009-1020. [PMID: 26795145 DOI: 10.1007/s00299-016-1934-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Acetic acid acts as a signal molecule, strongly enhancing xanthone biosynthesis in Hypericum perforatum root cultures. This activity is specific, as demonstrated by the comparison with other short-chain monocarboxylic acids. We have recently demonstrated that Hypericum perforatum root cultures constitutively produce xanthones at higher levels than the root of the plant and that they respond to chitosan (CHIT) elicitation with a noteworthy increase in xanthone production. In the present study, CHIT was administered to H. perforatum root cultures using three different elicitation protocols, and the increase in xanthone production was evaluated. The best results (550 % xanthone increase) were obtained by subjecting the roots to a single elicitation with 200 mg l(-1) CHIT and maintaining the elicitor in the culture medium for 7 days. To discriminate the effect of CHIT from that of the solvent, control experiments were performed by administering AcOH alone at the same concentration used for CHIT solubilization. Unexpectedly, AcOH caused an increase in xanthone production comparable to that observed in response to CHIT. Feeding experiments with (13)C-labeled AcOH demonstrated that this compound was not incorporated into the xanthone skeleton. Other short-chain monocarboxylic acids (i.e., propionic and butyric acid) have little or no effect on the production of xanthones. These results indicate that AcOH acts as a specific signal molecule, able to greatly enhance xanthone biosynthesis in H. perforatum root cultures.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - Giulia De Angelis
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Brasili E, Miccheli A, Marini F, Praticò G, Sciubba F, Di Cocco ME, Cechinel VF, Tocci N, Valletta A, Pasqua G. Metabolic Profile and Root Development of Hypericum perforatum L. In vitro Roots under Stress Conditions Due to Chitosan Treatment and Culture Time. FRONTIERS IN PLANT SCIENCE 2016; 7:507. [PMID: 27148330 PMCID: PMC4835506 DOI: 10.3389/fpls.2016.00507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/30/2016] [Indexed: 05/24/2023]
Abstract
The responses of Hypericum perforatum root cultures to chitosan elicitation had been investigated through (1)H-NMR-based metabolomics associated with morpho-anatomical analyses. The root metabolome was influenced by two factors, i.e., time of culture (associated with biomass growth and related "overcrowding stress") and chitosan elicitation. ANOVA simultaneous component analysis (ASCA) modeling showed that these factors act independently. In response to the increase of biomass density over time, a decrease in the synthesis of isoleucine, valine, pyruvate, methylamine, etanolamine, trigonelline, glutamine and fatty acids, and an increase in the synthesis of phenolic compounds, such as xanthones, epicatechin, gallic, and shikimic acid were observed. Among the xanthones, brasilixanthone B has been identified for the first time in chitosan-elicited root cultures of H. perforatum. Chitosan treatment associated to a slowdown of root biomass growth caused an increase in DMAPP and a decrease in stigmasterol, shikimic acid, and tryptophan levels. The histological analysis of chitosan-treated roots revealed a marked swelling of the root apex, mainly due to the hypertrophy of the first two sub-epidermal cell layers. In addition, periclinal divisions in hypertrophic cortical cells, resulting in an increase of cortical layers, were frequently observed. Most of the metabolic variations as well as the morpho-anatomical alterations occurred within 72 h from the elicitation, suggesting an early response of H. perforatum roots to chitosan elicitation. The obtained results improve the knowledge of the root responses to biotic stress and provide useful information to optimize the biotechnological production of plant compounds of industrial interest.
Collapse
Affiliation(s)
- Elisa Brasili
- Department of Environmental Biology, “Sapienza” University of RomeRome, Italy
| | - Alfredo Miccheli
- Department of Chemistry, “Sapienza” University of RomeRome, Italy
| | - Federico Marini
- Department of Chemistry, “Sapienza” University of RomeRome, Italy
| | - Giulia Praticò
- Department of Chemistry, “Sapienza” University of RomeRome, Italy
| | - Fabio Sciubba
- Department of Chemistry, “Sapienza” University of RomeRome, Italy
| | | | - Valdir Filho Cechinel
- Núcleo de Investigações Químico-Farmacêuticas/CCS, Universidade do Vale do ItajaíItajaí, Brazil
| | - Noemi Tocci
- Department of Environmental Biology, “Sapienza” University of RomeRome, Italy
| | - Alessio Valletta
- Department of Environmental Biology, “Sapienza” University of RomeRome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, “Sapienza” University of RomeRome, Italy
| |
Collapse
|
8
|
Zubrická D, Mišianiková A, Henzelyová J, Valletta A, De Angelis G, D'Auria FD, Simonetti G, Pasqua G, Čellárová E. Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. PLANT CELL REPORTS 2015; 34:1953-62. [PMID: 26194328 DOI: 10.1007/s00299-015-1842-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/23/2015] [Accepted: 07/10/2015] [Indexed: 05/17/2023]
Abstract
Highest xanthone contents were found in Hypericum pulchrum and H. annulatum untransformed roots. The best anti- Candida activity was obtained for hairy roots extracts of H. tetrapterum clone 2 ATCC 15834. Extracts of root cultures, hairy roots and cell suspensions of selected Hypericum spp. were screened for the presence of xanthones and tested for their antifungal activity against Candida albicans strain ATCC 10231. At least one of the following xanthones, 5-methoxy-2-deprenylrheediaxanthone; 1,3,6,7-tetrahydroxyxanthone; 1,3,5,6-tetrahydroxyxanthone; paxanthone; kielcorin or mangiferin was identified in methanolic extracts of the untransformed root cultures. The highest total xanthone content, with five xanthones, was found in untransformed H. pulchrum and H. annulatum root cultures. Hairy roots and the controls of H. tetrapterum contained 1,7-dihydroxyxanthone, while hairy root cultures and the corresponding controls of H. tomentosum contained toxyloxanthone B, 1,3,6,7- and 1,3,5,6-tetrahydroxyxanthone. Two xanthones, cadensin G and paxanthone, were identified in cell suspension cultures of H. perforatum. Their content increased about two-fold following elicitation with salicylic acid. The anti-Candida activity of the obtained extracts ranged from MIC 64 to >256 µg ml(-1). Among the extracts of Hypericum untransformed roots, the best antifungal activity was obtained for extracts of H. annulatum grown under CD conditions. Extracts of hairy roots clones A4 and 7 ATCC15834 of H. tomentosum and clone 2 ATCC15834 of H. tetrapterum displayed inhibition of 90% of Candida growth with 256 μg ml(-1). Extracts from chitosan-elicitated cells did not show antifungal activity.
Collapse
Affiliation(s)
- Daniela Zubrická
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Mánesova 23, 040 01, Košice, Slovakia
| | - Anna Mišianiková
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Mánesova 23, 040 01, Košice, Slovakia
| | - Jana Henzelyová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Mánesova 23, 040 01, Košice, Slovakia
| | - Alessio Valletta
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 001 85, Rome, Italy
| | - Giulia De Angelis
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 001 85, Rome, Italy
| | - Felicia Diodata D'Auria
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 001 85, Rome, Italy
| | - Giovanna Simonetti
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 001 85, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 001 85, Rome, Italy.
| | - Eva Čellárová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Mánesova 23, 040 01, Košice, Slovakia
| |
Collapse
|
9
|
Wang J, Qian J, Yao L, Lu Y. Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-014-0033-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Flavonoids of Hypericum perforatum are important secondary metabolites which have been widely utilized in medicine for a range of purposes. The use of methyl jasmonate (MeJA) elicitation for the enhancement of flavonoid production in cell suspension culture of H. perforatum would be an efficient alternative method for the flavonoid production.
Results
MeJA influenced the cells growth and flavonoid production. The optimal elicitation strategy was treatment of the cell cultures with 100 μmol/L MeJA on day 15, which resulted in the highest flavonoid production (280 mg/L) and 2.7 times of control cultures. The activities of catalase (CAT) were inhibited after MeJA treatment in the cell cultures, while the activities of phenylalanine ammonia lyase (PAL) increased, which led to the enhancement of flavonoid production.
Conclusion
MeJA elicitation is a useful method for the enhancement of flavonoid production in cell suspension culture of H. perforatum.
Collapse
|
10
|
Evaluation of anti-Candida activity of Vitis vinifera L. seed extracts obtained from wine and table cultivars. BIOMED RESEARCH INTERNATIONAL 2014; 2014:127021. [PMID: 24864227 PMCID: PMC4017847 DOI: 10.1155/2014/127021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/27/2014] [Indexed: 11/30/2022]
Abstract
For the first time, grape seed extracts (GSEs), obtained from wine and table cultivars of Vitis vinifera L., cultured in experimental fields of Lazio and Puglia regions of Italy and grown in different agronomic conditions, have been tested on 43 Candida species strains. We demonstrated a significant correlation between the content of the flavan-3-ols in GSEs extracts, with a polymerization degree ≥4, and anti-Candida activity. Moreover, we demonstrated that GSEs, obtained from plants cultured with reduced irrigation, showed a content of polymeric flavan-3-ols >250 mg/g with geometric mean MIC values between 5.7 and 20.2 mg/L against Candida albicans reference strains. GSE, showing 573 mg/g of polymeric flavan-3-ols, has been tested in an experimental murine model of vaginal candidiasis by using noninvasive in vivo imaging technique. The results pointed out a significant inhibition of Candida albicans load 5 days after challenge. These findings indicate that GSEs with high content of polymeric flavan-3-ols can be used in mucosal infection as vaginal candidiasis.
Collapse
|
11
|
Tusevski O, Petreska Stanoeva J, Stefova M, Simic SG. Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. Hairy root cultures. ScientificWorldJournal 2013; 2013:602752. [PMID: 24453880 PMCID: PMC3888740 DOI: 10.1155/2013/602752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/07/2013] [Indexed: 11/17/2022] Open
Abstract
Hypericum perforatum L. is a medicinal plant considered as an important natural source of secondary metabolites with a wide range of pharmacological attributes. Hairy roots (HR) were induced from root segments of in vitro grown seedlings from H. perforatum after cocultivation with Agrobacterium rhizogenes A4. Investigations have been made to study the production of phenolic compounds in dark-grown (HR1) and photoperiod-exposed (HR2) cultures. The chromatographic analysis of phenolic acids, flavonols, flavan-3-ols, and xanthones revealed marked differences between HR1 and HR2 cultures. The production of quinic acid, kaempferol, and seven identified xanthones was increased in HR2. Moreover, HR2 showed a capability for de novo biosynthesis of two phenolic acids (3-p-coumaroylquinic acid and 3-feruloylquinic acid), three flavonol glycosides (kaempferol hexoside, hyperoside, and quercetin acetylglycoside), and five xanthones (tetrahydroxy-one-methoxyxanthone, 1,3,5-trihydroxy-6-methoxyxanthone, 1,3,5,6-tetrahydroxy-2-prenylxanthone, paxanthone, and banaxanthone E). On the other side, HR1 cultures were better producers of flavan-3-ols (catechin, epicatechin, and proanthocyanidin dimers) than HR2. This is the first comparative study on phenolic profile of H. perforatum HR cultures grown under dark and photoperiod conditions.
Collapse
Affiliation(s)
- Oliver Tusevski
- Department of Plant Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, Macedonia
| | - Jasmina Petreska Stanoeva
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, Macedonia
| | - Marina Stefova
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, Macedonia
| | - Sonja Gadzovska Simic
- Department of Plant Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, Macedonia
| |
Collapse
|
12
|
Abstract
AbstractHypericum perforatum L. is a common perennial plant with a reputed medicinal value. Investigations have been made to develop an efficient protocol for the identification and quantification of secondary metabolites in hairy roots (HR) of Hypericum perforatum L. HR were induced from root segments of in vitro grown seedlings from H. perforatum, after co-cultivation with Agrobacterium rhizogenes A4. Transgenic status of HR was confirmed by PCR analysis using rolB specific primers. HR had an altered phenolic profile with respect to phenolic acids, flavonol glycosides, flavan-3-ols, flavonoid aglycones and xanthones comparing to control roots. Phenolics in control and HR cultures were observed to be qualitatively and quantitatively distinct. Quinic acid was the only detectable phenolic acid in HR. Transgenic roots are capable of producing flavonol glycosides such as quercetin 6-C-glucoside, quercetin 3-O-rutinoside (rutin) and isorhamnetin O-hexoside. The HPLC analysis of flavonoid aglycones in HR resulted in the identification of kaempferol. Transformed roots yielded higher levels of catechin and epicatechin than untransformed roots. Among the twenty-eight detected xanthones, four of them were identified as 1,3,5,6-tetrahydroxyxanthone, 1,3,6,7-tetrahydroxyxanthone, γ-mangostin and garcinone C were de novo synthesized in HR. Altogether, these results indicated that H. perforatum HR represent a promising experimental system for enhanced production of xanthones.
Collapse
|
13
|
Tocci N, D'Auria FD, Simonetti G, Panella S, Palamara AT, Debrassi A, Rodrigues CA, Filho VC, Sciubba F, Pasqua G. Bioassay-guided fractionation of extracts from Hypericum perforatum in vitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:342-7. [PMID: 23811777 DOI: 10.1016/j.plaphy.2013.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/28/2013] [Indexed: 05/09/2023]
Abstract
The aim of this study was to individuate, by bioassay-guided fractionation, promising antifungal fractions and/or constituents from Hypericum perforatum subsp. angustifolium in vitro roots. Treatments with chitosan, O-carboxymethylchitosan (CMC) and its derivatives were used to improve xanthone production in the roots. The bioassay-guided fractionation of CMC-treated roots led to the individuation of an ethyl acetate fraction, containing the highest amount of xanthones (6.8%) and showing the best antifungal activity with minimal inhibitory concentration (MIC) values of 53.82, 14.18, and 36.52 μg/ml, against Candida spp., Cryptococcus neoformans and dermatophytes, respectively. From this fraction the prenylated xanthone, biyouxanthone D has been isolated and represented the 44.59% of all xanthones detected. For the first time in the present paper biyouxanthone D has been found in H. perforatum roots and tested against C. neoformans, dermatophytes, and Candida species. The xanthone showed the greatest antifungal activity against C. neoformans and dermatophytes, with MIC values of 20.16, 22.63 μg/ml. In conclusion, the results obtained in the present study demonstrated that CMC-treated Hpa in vitro root extracts represent a tool for the obtainment of promising candidates for further pharmacological and clinical studies.
Collapse
Affiliation(s)
- Noemi Tocci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Peroxisomes house many metabolic processes that allow organisms to safely sequester reactions with potentially damaging byproducts. Peroxisomes also produce signaling molecules; in plants, these include the hormones indole-3-acetic acid (IAA) and jasmonic acid (JA). Indole-3-butyric acid (IBA) is a chain-elongated form of the active auxin IAA and is a key tool for horticulturists and plant breeders for inducing rooting in plant cultures and callus. IBA is both made from and converted to IAA, providing a mechanism to maintain optimal IAA levels. Based on genetic analysis and studies of IBA metabolism, IBA conversion to IAA occurs in peroxisomes, and the timing and activity of peroxisomal import and metabolism thereby contribute to the IAA pool in a plant. Four enzymes have been hypothesized to act specifically in peroxisomal IBA conversion to IAA. Loss of these enzymes results in decreased IAA levels, a reduction in auxin-induced gene expression, and strong disruptions in cell elongation resulting in developmental abnormalities. Additional activity by known fatty acid β-oxidation enzymes also may contribute to IBA β-oxidation via direct activity or indirect effects. This review will discuss the peroxisomal enzymes that have been implicated in auxin homeostasis and the importance of IBA-derived IAA in plant growth and development.
Collapse
Affiliation(s)
- Gretchen M Spiess
- Department of Biology, University of Missouri - St. Louis, St. Louis, USA
| | | |
Collapse
|