1
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2025; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Skalický V, Antoniadi I, Pěnčík A, Chamrád I, Lenobel R, Kubeš MF, Zatloukal M, Žukauskaitė A, Strnad M, Ljung K, Novák O. Fluorescence-activated multi-organelle mapping of subcellular plant hormone distribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1825-1841. [PMID: 37682018 DOI: 10.1111/tpj.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Vladimír Skalický
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Martin F Kubeš
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| |
Collapse
|
3
|
Li H, Li Y, Wang X, Jiao Z, Zhang W, Long Y. Characterization of Glycosyltransferase Family 1 (GT1) and Their Potential Roles in Anthocyanin Biosynthesis in Maize. Genes (Basel) 2023; 14:2099. [PMID: 38003042 PMCID: PMC10671782 DOI: 10.3390/genes14112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Glycosyltransferase family 1 (GT1) is a large group of proteins that play critical roles in secondary metabolite biosynthesis in plants. However, the GT1 family is not well studied in maize. In this study, 107 GT1 unigenes were identified in the maize reference genome and classified into 16 groups according to their phylogenetic relationship. GT1s are unevenly distributed across all ten maize chromosomes, occurring as gene clusters in some chromosomes. Collinearity analysis revealed that gene duplication events, whole-genome or segmental duplication, and tandem duplication occurred at a similar frequency, indicating that both types of gene duplication play notable roles in the expansion of the GT1 gene family. Expression analysis showed GT1s expressing in all tissues with specific expression patterns of each GT1, suggesting that they might participate in multiple biological processes during the whole growth and development stages. Furthermore, 16 GT1s were identified to have similar expression patterns to those of anthocyanidin synthase (ANS), the critical enzyme in anthocyanin biosynthesis. Molecular docking was carried out to examine the affinity of GT1s with substrates in anthocyanin biosynthesis. This study provides valuable information on the GT1s of maize and will promote the development of research on their biological functions in the biosynthesis of other secondary metabolites.
Collapse
Affiliation(s)
- Huangai Li
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing, Beijing 100083, China; (H.L.); (Y.L.); (X.W.)
| | - Yiping Li
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing, Beijing 100083, China; (H.L.); (Y.L.); (X.W.)
| | - Xiaofang Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing, Beijing 100083, China; (H.L.); (Y.L.); (X.W.)
| | - Ziwei Jiao
- Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; (Z.J.); (W.Z.)
| | - Wei Zhang
- Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; (Z.J.); (W.Z.)
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing, Beijing 100083, China; (H.L.); (Y.L.); (X.W.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
4
|
Liang Y, Xia J, Jiang Y, Bao Y, Chen H, Wang D, Zhang D, Yu J, Cang J. Genome-Wide Identification and Analysis of bZIP Gene Family and Resistance of TaABI5 ( TabZIP96) under Freezing Stress in Wheat ( Triticum aestivum). Int J Mol Sci 2022; 23:2351. [PMID: 35216467 PMCID: PMC8874521 DOI: 10.3390/ijms23042351] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023] Open
Abstract
The basic leucine zipper (bZIP) regulates plant growth and responds to stress as a key transcription factor of the Abscisic acid (ABA) signaling pathway. In this study, TabZIP genes were identified in wheat and the gene structure, physicochemical properties, cis-acting elements, and gene collinearity were analyzed. RNA-Seq and qRT-PCR analysis showed that ABA and abiotic stress induced most TabZIP genes expression. The ectopic expression of TaABI5 up-regulated the expression of several cold-responsive genes in Arabidopsis. Physiological indexes of seedlings of different lines under freezing stress showed that TaABI5 enhanced the freezing tolerance of plants. Subcellular localization showed that TaABI5 is localized in the nucleus. Furthermore, TaABI5 physically interacted with cold-resistant transcription factor TaICE1 in yeast two-hybrid system. In conclusion, this study identified and analyzed members of the TabZIP gene family in wheat. It proved for the first time that the gene TaABI5 affected the cold tolerance of transgenic plants and was convenient for us to understand the cold resistance molecular mechanism of TaABI5. These results will provide a new inspiration for further study on improving plant abiotic stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (J.X.); (Y.J.); (Y.B.); (H.C.); (D.W.); (D.Z.); (J.Y.)
| |
Collapse
|
5
|
Chen M, Yin Y, Zhang L, Yang X, Fu T, Huo X, Wang Y. Metabolomics and Transcriptomics Integration of Early Response of Populus tomentosa to Reduced Nitrogen Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:769748. [PMID: 34956269 PMCID: PMC8692568 DOI: 10.3389/fpls.2021.769748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most crucial elements for plant growth and development. However, little is known about the metabolic regulation of trees under conditions of N deficiency. In this investigation, gas chromatography-mass spectrometry (GC-MS) was used to determine global changes in metabolites and regulatory pathways in Populus tomentosa. Thirty metabolites were found to be changed significantly under conditions of low-N stress. N deficiency resulted in increased levels of carbohydrates and decreases in amino acids and some alcohols, as well as some secondary metabolites. Furthermore, an RNA-sequencing (RNA-Seq) analysis was performed to characterize the transcriptomic profiles, and 1,662 differentially expressed genes were identified in P. tomentosa. Intriguingly, four pathways related to carbohydrate metabolism were enriched. Genes involved in the gibberellic acid and indole-3-acetic acid pathways were found to be responsive to low-N stress, and the contents of hormones were then validated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Coordinated metabolomics and transcriptomics analysis revealed a pattern of co-expression of five pairs of metabolites and unigenes. Overall, our investigation showed that metabolism directly related to N deficiency was depressed, while some components of energy metabolism were increased. These observations provided insights into the metabolic and molecular mechanisms underlying the interactions of N and carbon in poplar.
Collapse
Affiliation(s)
- Min Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiyi Yin
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Lichun Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaoqian Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Tiantian Fu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaowei Huo
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Song Y, Chen P, Xuan A, Bu C, Liu P, Ingvarsson PK, El-Kassaby YA, Zhang D. Integration of genome wide association studies and co-expression networks reveal roles of PtoWRKY 42-PtoUGT76C1-1 in trans-zeatin metabolism and cytokinin sensitivity in poplar. THE NEW PHYTOLOGIST 2021; 231:1462-1477. [PMID: 33999454 DOI: 10.1111/nph.17469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Cytokinins are important for in vitro shoot regeneration in plants. Cytokinin N-glucosides are produced via an irreversible glycosylation pathway, which regulates the endogenous cytokinin content. Although cytokinin N-glucoside pathways have been uncovered in higher plants, no regulator has been identified to date. We performed a metabolome genome-wide association study (mGWAS), weighted gene co-expression network analysis (WGCNA), and expression quantitative trait nucleotide (eQTN) mappings to build a core triple genetic network (mGWAS-gene expression-phenotype) for the trans-zeatin N-glucoside (ZNG) metabolite using data from 435 unrelated Populus tomentosa individuals. Variation of the ZNG level in poplar is attributed to the differential transcription of PtoWRKY42, a member of WRKY multigene family group IIb. Functional analysis revealed that PtoWRKY42 negatively regulated ZNG accumulation by binding directly to the W-box of the UDP-glycosyltransferase 76C 1-1 (PtoUGT761-1) promoter. Also, PtoWRKY42 was strongly induced by leaf senescence, 6-BA, wounding, and salt stress, resulting in a reduced ZNG level. We identified PtoWRKY42, a negative regulator of cytokinin N-glucosides, which contributes to the natural variation in ZNG level and mediates ZNG accumulation by directly modulating the key glycosyltransferase gene PtoUGT76C1-1.
Collapse
Affiliation(s)
- Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Anran Xuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Box 7080, Uppsala, SE-750 07, Sweden
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
7
|
In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Sci Rep 2021; 11:10965. [PMID: 34040101 PMCID: PMC8154917 DOI: 10.1038/s41598-021-90528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways. Growth parameters and hormones amount were also estimated. Transcriptomic data and hormone quantification showed that, under prolonged Cd treatment, level and signalling of growth-sustaining hormones (auxins, CKs, GAs) were enhanced and/or maintained, while a decrease was detected for stress-related hormones (JA, ABA, SA), likely as a strategy to avoid the side effects of their long-lasting activation. Such picture was more effective in ddc than WT, already at 25 µM Cd, in line with its better growth performance. A tight relationship between methylation status and the modulation of hormone genetic pathways under Cd stress was assessed. We propose that the higher genome plasticity conferred to ddc by DNA hypomethylated status underlies its prompt response to modulate hormones genetic pathways and activity and assure a flexible growth.
Collapse
|
8
|
Chen L, Zhao J, Song J, Jameson PE. Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:878-896. [PMID: 33811433 PMCID: PMC8131048 DOI: 10.1111/pbi.13595] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/28/2021] [Indexed: 05/05/2023]
Abstract
The cytokinins, which are N6 -substituted adenine derivatives, control key aspects of crop productivity. Cytokinin levels are controlled via biosynthesis by isopentenyl transferase (IPT), destruction by cytokinin oxidase/dehydrogenase (CKX), and inactivation via glucosylation by cytokinin glucosyl transferases (CGTs). While both yield components and tolerance to drought and related abiotic stressors have been positively addressed via manipulation of IPT and/or CKX expression, much less attention has been paid to the CGTs. As naming of the CGTs has been unclear, we suggest COGT, CNGT, CONGT and CNOGT to describe the O-, N- and dual function CGTs. As specific CGT mutants of both rice and arabidopsis showed impacts on yield components, we interrogated the wheat genome database, IWGSC RefSeq v1.0 & v2.0, to investigate wheat CGTs. Besides providing unambiguous names for the 53 wheat CGTs, we show their expression patterns in 70 developmental tissues and their response characteristics to various stress conditions by reviewing more than 1000 RNA-seq data sets. These revealed various patterns of responses and showed expression generally being more limited in reproductive tissues than in vegetative tissues. Multiple cis-regulatory elements are present in the 3 kb upstream of the start codons of the 53 CGTs. Elements associated with abscisic acid, light and methyl jasmonate are particularly over-represented, indicative of the responsiveness of CGTs to the environment. These data sets indicate that CGTs have potential value for wheat improvement and that these could be targeted in TILLING or gene editing wheat breeding programmes.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | - Jing Zhao
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
9
|
Cytokinin N-glucosides: Occurrence, Metabolism and Biological Activities in Plants. Biomolecules 2020; 11:biom11010024. [PMID: 33379369 PMCID: PMC7824008 DOI: 10.3390/biom11010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/11/2023] Open
Abstract
Cytokinins (CKs) are a class of phytohormones affecting many aspects of plant growth and development. In the complex process of CK homeostasis in plants, N-glucosylation represents one of the essential metabolic pathways. Its products, CK N7- and N9-glucosides, have been largely overlooked in the past as irreversible and inactive CK products lacking any relevant physiological impact. In this work, we report a widespread distribution of CK N-glucosides across the plant kingdom proceeding from evolutionary older to younger plants with different proportions between N7- and N9-glucosides in the total CK pool. We show dramatic changes in their profiles as well as in expression levels of the UGT76C1 and UGT76C2 genes during Arabidopsis ontogenesis. We also demonstrate specific physiological effects of CK N-glucosides in CK bioassays including their antisenescent activities, inhibitory effects on root development, and activation of the CK signaling pathway visualized by the CK-responsive YFP reporter line, TCSv2::3XVENUS. Last but not least, we present the considerable impact of CK N7- and N9-glucosides on the expression of CK-related genes in maize and their stimulatory effects on CK oxidase/dehydrogenase activity in oats. Our findings revise the apparent irreversibility and inactivity of CK N7- and N9-glucosides and indicate their involvement in CK evolution while suggesting their unique function(s) in plants.
Collapse
|
10
|
Antoniadi I, Novák O, Gelová Z, Johnson A, Plíhal O, Simerský R, Mik V, Vain T, Mateo-Bonmatí E, Karady M, Pernisová M, Plačková L, Opassathian K, Hejátko J, Robert S, Friml J, Doležal K, Ljung K, Turnbull C. Cell-surface receptors enable perception of extracellular cytokinins. Nat Commun 2020; 11:4284. [PMID: 32855409 PMCID: PMC7453015 DOI: 10.1038/s41467-020-17700-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/14/2020] [Indexed: 11/22/2022] Open
Abstract
Cytokinins are mobile multifunctional plant hormones with roles in development and stress resilience. Although their Histidine Kinase receptors are substantially localised to the endoplasmic reticulum, cellular sites of cytokinin perception and importance of spatially heterogeneous cytokinin distribution continue to be debated. Here we show that cytokinin perception by plasma membrane receptors is an effective additional path for cytokinin response. Readout from a Two Component Signalling cytokinin-specific reporter (TCSn::GFP) closely matches intracellular cytokinin content in roots, yet we also find cytokinins in extracellular fluid, potentially enabling action at the cell surface. Cytokinins covalently linked to beads that could not pass the plasma membrane increased expression of both TCSn::GFP and Cytokinin Response Factors. Super-resolution microscopy of GFP-labelled receptors and diminished TCSn::GFP response to immobilised cytokinins in cytokinin receptor mutants, further indicate that receptors can function at the cell surface. We argue that dual intracellular and surface locations may augment flexibility of cytokinin responses.
Collapse
Affiliation(s)
- Ioanna Antoniadi
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Zuzana Gelová
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
- CEITEC-Central European Institute of Technology and NCBR, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Alexander Johnson
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Radim Simerský
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Václav Mik
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Thomas Vain
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
- Chr. Hansen, 2630, Taastrup, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, 2630, Taastrup, Denmark
| | - Eduardo Mateo-Bonmatí
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Markéta Pernisová
- CEITEC-Central European Institute of Technology and NCBR, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | | | - Jan Hejátko
- CEITEC-Central European Institute of Technology and NCBR, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Vylíčilová H, Bryksová M, Matušková V, Doležal K, Plíhalová L, Strnad M. Naturally Occurring and Artificial N9-Cytokinin Conjugates: From Synthesis to Biological Activity and Back. Biomolecules 2020; 10:biom10060832. [PMID: 32485963 PMCID: PMC7356397 DOI: 10.3390/biom10060832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/18/2023] Open
Abstract
Cytokinins and their sugar or non-sugar conjugates are very active growth-promoting factors in plants, although they occur at very low concentrations. These compounds have been identified in numerous plant species. This review predominantly focuses on 9-substituted adenine-based cytokinin conjugates, both artificial and endogenous, sugar and non-sugar, and their roles in plants. Acquired information about their biological activities, interconversions, and metabolism improves understanding of their mechanisms of action and functions in planta. Although a number of 9-substituted cytokinins occur endogenously, many have also been prepared in laboratories to facilitate the clarification of their physiological roles and the determination of their biological properties. Here, we chart advances in knowledge of 9-substituted cytokinin conjugates from their discovery to current understanding and reciprocal interactions between biological properties and associated structural motifs. Current organic chemistry enables preparation of derivatives with better biological properties, such as improved anti-senescence, strong cell division stimulation, shoot forming, or more persistent stress tolerance compared to endogenous or canonical cytokinins. Many artificial cytokinin conjugates stimulate higher mass production than naturally occurring cytokinins, improve rooting, or simply have high stability or bioavailability. Thus, knowledge of the biosynthesis, metabolism, and activity of 9-substituted cytokinins in various plant species extends the scope for exploiting both natural and artificially prepared cytokinins in plant biotechnology, tissue culture, and agriculture.
Collapse
Affiliation(s)
- Hana Vylíčilová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Magdaléna Bryksová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Vlasta Matušková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (H.V.); (M.B.); (V.M.); (K.D.)
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
- Correspondence:
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic;
| |
Collapse
|
12
|
Wang X, Ding J, Lin S, Liu D, Gu T, Wu H, Trigiano RN, McAvoy R, Huang J, Li Y. Evolution and roles of cytokinin genes in angiosperms 2: Do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles? HORTICULTURE RESEARCH 2020; 7:29. [PMID: 32140238 PMCID: PMC7049301 DOI: 10.1038/s41438-020-0246-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 05/23/2023]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) is a key enzyme responsible for the degradation of endogenous cytokinins. However, the origins and roles of CKX genes in angiosperm evolution remain unclear. Based on comprehensive bioinformatic and transgenic plant analyses, we demonstrate that the CKXs of land plants most likely originated from an ancient chlamydial endosymbiont during primary endosymbiosis. We refer to the CKXs retaining evolutionarily ancient characteristics as "ancient CKXs" and those that have expanded and functionally diverged in angiosperms as "non-ancient CKXs". We show that the expression of some non-ancient CKXs is rapidly inducible within 15 min upon the dehydration of Arabidopsis, while the ancient CKX (AtCKX7) is not drought responsive. Tobacco plants overexpressing a non-ancient CKX display improved oxidative and drought tolerance and root growth. Previous mutant studies have shown that non-ancient CKXs regulate organ development, particularly that of flowers. Furthermore, ancient CKXs preferentially degrade cis-zeatin (cZ)-type cytokinins, while non-ancient CKXs preferentially target N6-(Δ2-isopentenyl) adenines (iPs) and trans-zeatins (tZs). Based on the results of this work, an accompanying study (Wang et al. 10.1038/s41438-019-0211-x) and previous studies, we hypothesize that non-ancient CKXs and their preferred substrates of iP/tZ-type cytokinins regulate angiosperm organ development and environmental stress responses, while ancient CKXs and their preferred substrates of cZs play a housekeeping role, which echoes the conclusions and hypothesis described in the accompanying report (Wang, X. et al. Evolution and roles of cytokinin genes in angiosperms 1: Doancient IPTs play housekeeping while non-ancient IPTs play regulatory roles? Hortic Res7, (2020). 10.1038/s41438-019-0211-x).
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Shanshan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Decai Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Han Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560 USA
| | - Richard McAvoy
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269 USA
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Yi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
13
|
Steady-State Levels of Cytokinins and Their Derivatives May Serve as a Unique Classifier of Arabidopsis Ecotypes. PLANTS 2020; 9:plants9010116. [PMID: 31963497 PMCID: PMC7020191 DOI: 10.3390/plants9010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/17/2022]
Abstract
We determined steady-state (basal) endogenous levels of three plant hormones (abscisic acid, cytokinins and indole-3-acetic acid) in a collection of thirty different ecotypes of Arabidopsis that represent a broad genetic variability within this species. Hormone contents were analysed separately in plant shoots and roots after 21 days of cultivation on agar plates in a climate-controlled chamber. Using advanced statistical and machine learning methods, we tested if basal hormonal levels can be considered a unique ecotype-specific classifier. We also explored possible relationships between hormone levels and the prevalent environmental conditions in the site of origin for each ecotype. We found significant variations in basal hormonal levels and their ratios in both root and shoot among the ecotypes. We showed the prominent position of cytokinins (CK) among the other hormones. We found the content of CK and CK metabolites to be a reliable ecotype-specific identifier. Correlation with the mean temperature at the site of origin and the large variation in basal hormonal levels suggest that the high variability may potentially be in response to environmental factors. This study provides a starting point for ecotype-specific genetic maps of the CK metabolic and signalling network to explore its contribution to the adaptation of plants to local environmental conditions.
Collapse
|
14
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
15
|
Yin B, Zhang J, Liu Y, Pan X, Zhao Z, Li H, Zhang C, Li C, Du X, Li Y, Liu D, Lu H. PtomtAPX, a mitochondrial ascorbate peroxidase, plays an important role in maintaining the redox balance of Populus tomentosa Carr. Sci Rep 2019; 9:19541. [PMID: 31862975 PMCID: PMC6925217 DOI: 10.1038/s41598-019-56148-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
Plant mitochondria are important energy-producing structure and ROS are generated as byproducts. APX is one enzyme of the AsA-GSH cycle to reduces H2O2 to water. We identified both PtomtAPX and PtosAPX are located in mitochondria of Populus tomentosa Carr. PtomtAPX is specifically targeted to mitochondria, while PtosAPX is dual targeted to both chloroplast and mitochondria. The expression of PtomtAPX in mitochondria was 60-fold that of PtosAPX by ELISA and qPCR analysis. Under high light stress, the expression levels of PtosAPX increased, while that of PtomtAPX only slightly changed. Compared to the WT, the antisense transgenic PtomtAPX cell lines showed slowed growth, smaller cells impaired mitochondria in MS medium under normal growth. RNA-seq results showed 3121 genes significantly altered expression in the antisense cells, and most of them are important for mitochondrial function, particularly in oxidative phosphorylation. Our findings demonstrates a mitochondrial location for one APX isoform, and provide valuable insight into the mechanism which ROS balance is modulated by AsA-GSH cycle in mitochondria.
Collapse
Affiliation(s)
- Bin Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiang Pan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Zhijing Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Conghui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xihua Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yinjun Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
16
|
Louveau T, Osbourn A. The Sweet Side of Plant-Specialized Metabolism. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034744. [PMID: 31235546 DOI: 10.1101/cshperspect.a034744] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycosylation plays a major role in the structural diversification of plant natural products. It influences the properties of molecules by modifying the reactivity and solubility of the corresponding aglycones, so influencing cellular localization and bioactivity. Glycosylation of plant natural products is usually carried out by uridine diphosphate(UDP)-dependent glycosyltransferases (UGTs) belonging to the carbohydrate-active enzyme glycosyltransferase 1 (GT1) family. These enzymes transfer sugars from UDP-activated sugar moieties to small hydrophobic acceptor molecules. Plant GT1s generally show high specificity for their sugar donors and recognize a single UDP sugar as their substrate. In contrast, they are generally promiscuous with regard to acceptors, making them attractive biotechnological tools for small molecule glycodiversification. Although microbial hosts have traditionally been used for heterologous engineering of plant-derived glycosides, transient plant expression technology offers a potentially disruptive platform for rapid characterization of new plant glycosyltransferases and biosynthesis of complex glycosides.
Collapse
Affiliation(s)
- Thomas Louveau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
17
|
Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms. J Nat Med 2018; 72:867-881. [DOI: 10.1007/s11418-018-1218-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/18/2018] [Indexed: 11/28/2022]
|
18
|
Zhao Y, Zhang Y, Wang L, Wang X, Xu W, Gao X, Liu B. Mapping and Functional Analysis of a Maize Silkless Mutant sk-A7110. FRONTIERS IN PLANT SCIENCE 2018; 9:1227. [PMID: 30186299 PMCID: PMC6111845 DOI: 10.3389/fpls.2018.01227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/31/2018] [Indexed: 05/03/2023]
Abstract
The maize (Zea mays) stigma, which is commonly known as silk, is indispensable for reproduction and thus for grain yield. Here, we isolated a spontaneous mutant sk-A7110, which completely lacks silk; scanning electron microscopy showed that the sk-A7110 pistils degenerated during late floret differentiation. Genetic analysis confirmed that this trait was controlled by a recessive nuclear gene and sk-A7110 was mapped to a 74.13-kb region on chromosome 2 between the simple sequence repeat markers LA714 and L277. Sequence analysis of candidate genes in this interval identified a single-nucleotide insertion at position 569 downstream of the transcriptional start site in Zm00001d002970, which encodes a UDP-glycosyltransferase; this insertion produces a frameshift and premature translational termination. RNA-sequencing analysis of young ears identified 258 differentially expressed genes (DEGs) between sk-A7110 and the wild type (WT), including 119 up- and 139 down-regulated genes. Interestingly, most DEGs related to jasmonic acid (JA) synthesis were up-regulated in the mutant compared to WT. Consistent with this, the JA and JA-Isoleucine (JA-Ile) contents were significantly higher in sk-A7110 ears than in WT. At the same time, RNA-sequencing analysis of tassels showed that sk-A7110 could reduce the number of tassel branches in maize by down-regulating the expression of UB2 and UB3 genes. Our identification of the sk-A7110 mutant and the responsible gene will facilitate further studies on female infertility research or maize breeding.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongzhong Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lijing Wang
- Agricultural Technology Promotion Center of Yanzhou, Jining, China
| | - Xueran Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wei Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xianyu Gao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Baoshen Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Baoshen Liu,
| |
Collapse
|
19
|
Vondrakova Z, Dobrev PI, Pesek B, Fischerova L, Vagner M, Motyka V. Profiles of Endogenous Phytohormones Over the Course of Norway Spruce Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1283. [PMID: 30237806 PMCID: PMC6136392 DOI: 10.3389/fpls.2018.01283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/16/2018] [Indexed: 05/19/2023]
Abstract
Conifer somatic embryogenesis (SE) is a process driven by exogenously supplied plant growth regulators (PGRs). Exogenous PGRs and endogenous phytohormones trigger particular ontogenetic events. Complex mechanisms involving a number of endogenous phytohormones control the differentiation of cells and tissues, as well as the establishment of structures and organs. Most of the mechanisms and hormonal functions in the SE of conifers have not yet been described. With the aim to better understand these mechanisms, we provided detailed analysis of the spectrum of endogenous phytohormones over the course of SE in Norway spruce (Picea abies). Concentrations of endogenous phytohormones including auxins, cytokinins (CKs), abscisic acid (ABA), jasmonates, and salicylic acid (SA) in somatic P. abies embryos were analyzed by HPLC-ESI-MS/MS. The results revealed that the concentrations of particular phytohormone classes varied substantially between proliferation, maturation, desiccation, and germination. Endogenous ABA showed a maximum concentration at the maturation stage, which reflected the presence of exogenous ABA in the medium and demonstrated its efficient perception by the embryos as a prerequisite for their further development. Auxins also had concentration maxima at the maturation stage, suggesting a role in embryo polarization. Endogenous jasmonates were detected in conifer somatic embryos for the first time, and reached maxima at germination. According to our knowledge, we have presented evidence for the involvement of the non-indole auxin phenylacetic acid, cis-zeatin- and dihydrozeatin-type CKs and SA in SE for the first time. The presented results represent the currently most comprehensive overview of plant hormone levels in embryos throughout the whole process of conifer SE. The differences in concentrations of various classes of phytohormones over the proliferation, maturation, desiccation, and germination in somatic P. abies embryos clearly indicate correlations between endogenous phytohormone profiles and particular developmental stages of the SE of conifers.
Collapse
Affiliation(s)
- Zuzana Vondrakova
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Bedrich Pesek
- Laboratory of Mass Spectrometry, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Fischerova
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Vagner
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Vaclav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Vaclav Motyka,
| |
Collapse
|
20
|
Sun Y, Ji K, Liang B, Du Y, Jiang L, Wang J, Kai W, Zhang Y, Zhai X, Chen P, Wang H, Leng P. Suppressing ABA uridine diphosphate glucosyltransferase (SlUGT75C1) alters fruit ripening and the stress response in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:574-589. [PMID: 28482127 DOI: 10.1111/tpj.13588] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 05/02/2023]
Abstract
Abscisic acid (ABA) glucose conjugation mediated by uridine diphosphate glucosyltransferases (UGTs) is an important pathway in regulating ABA homeostasis. In the present study, we investigated three tomato SlUGTs that are highly expressed in fruit during ripening, and these SlUGTs were localized to the cytoplasm and cell nucleus. Among these three UGTs, SlUGT75C1 catalyzes the glucosylation of both ABA and IAA in vitro; SlUGT76E1 can only catalyze the conjugation of ABA; and SlUGT73C4 cannot glycosylate either ABA or IAA. Therefore, SlUGT75C1 was selected for further investigation. SlUGT75C1 RNA interference significantly up-regulated the expression level of SlCYP707A2, which encodes an ABA 8'-hydroxylase but did not affect the expression of SlNCED1, which encodes a key enzyme in ABA biosynthesis. Suppression of SlUGT75C1 significantly accelerated fruit ripening by enhancing ABA levels and promoting the early release of ethylene. SlUGT75C1-RNAi altered the expression of fruit ripening genes (genes involved in ethylene release and cell wall catabolism). SlUGT75C1-RNAi seeds showed delayed germination and root growth compared with wild-type as well as increased sensitivity to exogenous ABA. SlUGT75C1-RNAi plants were also more resistant to drought stress. These results demonstrated that SlUGT75C1 plays a crucial role in ABA-mediated fruit ripening, seed germination, and drought responses in tomato.
Collapse
Affiliation(s)
- Yufei Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kai Ji
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bin Liang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yangwei Du
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Li Jiang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Juan Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenbin Kai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yushu Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiawan Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Pei Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongqing Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ping Leng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Šmehilová M, Dobrůšková J, Novák O, Takáč T, Galuszka P. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance. FRONTIERS IN PLANT SCIENCE 2016; 7:1264. [PMID: 27602043 PMCID: PMC4993776 DOI: 10.3389/fpls.2016.01264] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/08/2016] [Indexed: 05/18/2023]
Abstract
Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in all UGT mutants. In contrast, a specific regulation of CKX7, CKX1 and CKX2 was observed for each individual UGT mutant isoform after exogenous CK uptake. Employing an in silico prediction we proposed cytosolic localization of UGT76C1 and UGT76C2, that we further confirmed by GFP tagging of UGT76C2. Integrating all the results, we therefore hypothesize that UGTs possess different physiological roles in Arabidopsis and serve as a fine-tuning mechanism of active CK levels in cytosol.
Collapse
Affiliation(s)
- Mária Šmehilová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Jana Dobrůšková
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc and Institute of Experimental Botany ASCROlomouc, Czech Republic
| | - Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in OlomoucOlomouc, Czech Republic
| |
Collapse
|
22
|
Zürcher E, Müller B. Cytokinin Synthesis, Signaling, and Function--Advances and New Insights. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:1-38. [PMID: 27017005 DOI: 10.1016/bs.ircmb.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plant hormones referred to as cytokinins are chemical signals that control numerous developmental processes throughout the plant life cycle, including gametogenesis, root meristem specification, vascular development, shoot and root growth, meristem homeostasis, senescence, and more. In addition, they mediate responses to environmental cues such as light, stress, and nutrient conditions. The core mechanistics of cytokinin metabolism and signaling have been elucidated, but more layers of regulation, additional functions, and interactions with other signals are continuously discovered and described. In this chapter, we recapitulate the highlights of over 100 years of cytokinin research covering its isolation, the elucidation of phosphorelay signaling, and how cytokinin functions in various developmental contexts including its interaction with other pathways. Additionally, given cytokinin's paracrine signaling mechanism, we postulate that cellular exporters for cytokinins exist.
Collapse
Affiliation(s)
- E Zürcher
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich Zurich, Switzerland
| | - B Müller
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich Zurich, Switzerland.
| |
Collapse
|
23
|
Jiskrová E, Novák O, Pospíšilová H, Holubová K, Karády M, Galuszka P, Robert S, Frébort I. Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. N Biotechnol 2016; 33:735-742. [PMID: 26777983 DOI: 10.1016/j.nbt.2015.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
The plant hormones cytokinins are a convenient target of genetic manipulations that bring benefits in biotechnological applications. The present work demonstrates the importance of the subcellular compartmentalization of cytokinins on the model dicot plant Arabidopsis thaliana and monocot crop Hordeum vulgare. The method of protoplast and vacuole isolation combined with precise cytokinin analysis and recovery assay of a vacuolar marker protein were used to quantify the contents of individual cytokinin forms in the leaf extracellular space, cell interior and vacuole. The data obtained for wild type plants and in each case a specific mutant line allow comparing the effect of genetic manipulations on the hormone distribution and homeostatic balance of cytokinins in the modified plants.
Collapse
Affiliation(s)
- Eva Jiskrová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Ondřej Novák
- Department of Metabolomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Hana Pospíšilová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Katarína Holubová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Michal Karády
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic; Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Stéphanie Robert
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic.
| |
Collapse
|
24
|
Shavrukov Y, Hirai Y. Good and bad protons: genetic aspects of acidity stress responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:15-30. [PMID: 26417020 DOI: 10.1093/jxb/erv437] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood.
Collapse
Affiliation(s)
- Yuri Shavrukov
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia School of Biological Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Yoshihiko Hirai
- The Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
25
|
Koeslin-Findeklee F, Becker MA, van der Graaff E, Roitsch T, Horst WJ. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3669-81. [PMID: 25944925 PMCID: PMC4473979 DOI: 10.1093/jxb/erv170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency.
Collapse
Affiliation(s)
- Fabian Koeslin-Findeklee
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Martin A Becker
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Eric van der Graaff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Højbakkegård Allé13, DK-2630 Taastrup, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Højbakkegård Allé13, DK-2630 Taastrup, Denmark Global Change Research Centre, CzechGlobe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| | - Walter J Horst
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
26
|
Zamboni A, Astolfi S, Zuchi S, Pii Y, Guardini K, Tononi P, Varanini Z. Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1080-94. [PMID: 24805158 DOI: 10.1111/jipb.12214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/05/2014] [Indexed: 05/07/2023]
Abstract
In higher plants, NO3(-) can induce its own uptake and the magnitude of this induction is positively related to the external anion concentration. This phenomenon has been characterized in both herbaceous and woody plants. Here, different adaptation strategies of roots from two maize (Zea mays L., ZmAGOs) inbred lines differing in nitrogen use efficiency (NUE) and exhibiting different timing of induction were discussed by investigating NO3(-) -induced changes in their transcriptome. Lo5 line (high NUE) showing the maximum rate of NO3(-) uptake 4 h after the provision of 200 μmol/L NO3(-) treatment modulated a higher number of transcripts relative to T250 (low NUE) that peaked after 12 h. The two inbred lines share only 368 transcripts that are modulated by the treatment with NO3(-) and behaved differently when transcripts involved in anion uptake and assimilation were analyzed. T250 line responded to the NO3(-) induction modulating this group of genes as reported for several plant species. On the contrary, the Lo5 line did not exhibit during the induction changes in this set of genes. Obtained data suggest the importance of exploring the physiological and molecular variations among different maize genotypes in response to environmental clues like NO3(-) provision, in order to understand mechanisms underlying NUE.
Collapse
Affiliation(s)
- Anita Zamboni
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cytokinins are N (6) substituted adenine derivatives that affect many aspects of plant growth and development, including cell division, shoot initiation and growth, leaf senescence, apical dominance, sink/source relationships, nutrient uptake, phyllotaxis, and vascular, gametophyte, and embryonic development, as well as the response to biotic and abiotic factors. Molecular genetic studies in Arabidopsis have helped elucidate the mechanisms underlying the function of this phytohormone in plants. Here, we review our current understanding of cytokinin biosynthesis and signaling in Arabidopsis, the latter of which is similar to bacterial two-component phosphorelays. We discuss the perception of cytokinin by the ER-localized histidine kinase receptors, the role of the AHPs in mediating the transfer of the phosphoryl group from the receptors to the response regulators (ARRs), and finally the role of the large ARR family in cytokinin function. The identification and genetic manipulation of the genes involved in cytokinin metabolism and signaling have helped illuminate the roles of cytokinins in Arabidopsis. We discuss these diverse roles, and how other signaling pathways influence cytokinin levels and sensitivity though modulation of the expression of cytokinin signaling and metabolic genes.
Collapse
Affiliation(s)
- Joseph J Kieber
- University of North Carolina, Biology Department, Chapel Hill, NC 27599-3280
| | - G Eric Schaller
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755
| |
Collapse
|