1
|
Feng X, Chen X, Meng Q, Song Z, Zeng J, He X, Wu F, Ma W, Liu W. Comparative Long Non-Coding Transcriptome Analysis of Three Contrasting Barley Varieties in Response to Aluminum Stress. Int J Mol Sci 2024; 25:9181. [PMID: 39273130 PMCID: PMC11395258 DOI: 10.3390/ijms25179181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Aluminum toxicity is a major abiotic stress on acidic soils, leading to restricted root growth and reduced plant yield. Long non-coding RNAs are crucial signaling molecules regulating the expression of downstream genes, particularly under abiotic stress conditions. However, the extent to which lncRNAs participate in the response to aluminum (Al) stress in barley remains largely unknown. Here, we conducted RNA sequencing of root samples under aluminum stress and compared the lncRNA transcriptomes of two Tibetan wild barley genotypes, XZ16 (Al-tolerant) and XZ61 (Al-sensitive), as well as the aluminum-tolerant cultivar Dayton. In total, 268 lncRNAs were identified as aluminum-responsive genes on the basis of their differential expression profiles under aluminum treatment. Through target gene prediction analysis, we identified 938 candidate lncRNA-messenger RNA (mRNA) pairs that function in a cis-acting manner. Subsequently, enrichment analysis showed that the genes targeted by aluminum-responsive lncRNAs were involved in diterpenoid biosynthesis, peroxisome function, and starch/sucrose metabolism. Further analysis of genotype differences in the transcriptome led to the identification of 15 aluminum-responsive lncRNAs specifically altered by aluminum stress in XZ16. The RNA sequencing data were further validated by RT-qPCR. The functional roles of lncRNA-mRNA interactions demonstrated that these lncRNAs are involved in the signal transduction of secondary messengers, and a disease resistance protein, such as RPP13-like protein 4, is probably involved in aluminum tolerance in XZ16. The current findings significantly contribute to our understanding of the regulatory roles of lncRNAs in aluminum tolerance and extend our knowledge of their importance in plant responses to aluminum stress.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoya Chen
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyan Song
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Wujun Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Qiu CW, Ma Y, Gao ZF, Sreesaeng J, Zhang S, Liu W, Ahmed IM, Cai S, Wang Y, Zhang G, Wu F. Genome-wide profiling of genetic variations reveals the molecular basis of aluminum stress adaptation in Tibetan wild barley. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132541. [PMID: 37716271 DOI: 10.1016/j.jhazmat.2023.132541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Aluminum (Al) toxicity in acidic soil is a major factor affecting crop productivity. The extensive genetic diversity found in Tibetan wild barley germplasms offers a valuable reservoir of alleles associated with aluminum tolerance. Here, resequencing of two Al-tolerant barley genotypes (Tibetan wild barley accession XZ16 and cultivated barley Dayton) identified a total of 19,826,182 and 16,287,277 single nucleotide polymorphisms (SNPs), 1628,052 and 1386,973 insertions/deletions (InDels), 61,532 and 57,937 structural variations (SVs), 248,768 and 240,723 copy number variations (CNVs) in XZ16 and Dayton, respectively, and uncovered approximately 600 genes highly related to Al tolerance in barley. Comparative genomic analyses unveiled 71 key genes that contain unique genetic variants in XZ16 and are predominantly associated with organic acid exudation, Al sequestration, auxin response, and transcriptional regulation. Manipulation of these key genes at the genetic and transcriptional level is a promising strategy for developing optimal haplotype combinations and new barley cultivars with improved Al tolerance. This study represents the first comprehensive examination of genetic variation in Al-tolerant Tibetan wild barley through genome-wide profiling. The obtained results make the deep insight into the mechanisms underlying barley adaptation to Al toxicity, and identified the candidate genes useful for improvement of Al tolerance in barley.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Zi-Feng Gao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jakkrit Sreesaeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Imrul Mosaddek Ahmed
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Plant Biotechnology Laboratory, Center for Viticulture & Small Fruit Research, Florida A&M University, FL 32317, USA
| | - Shengguan Cai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Liu W, Feng X, Cao F, Wu D, Zhang G, Vincze E, Wang Y, Chen ZH, Wu F. An ATP binding cassette transporter HvABCB25 confers aluminum detoxification in wild barley. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123371. [PMID: 32763683 DOI: 10.1016/j.jhazmat.2020.123371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Aluminum (Al) stress in acid soils is one of the major factors limiting crop productivity. ATP binding cassette (ABC) transporters have numerous roles in plants, but the link between ABCB protein subfamily and plant Al tolerance is still elusive. Here, we identified and characterized a novel tonoplast HvABCB25 in barley root cells. HvABCB25 was up-regulated in the transcriptome of Al-tolerant wild barley XZ16 under Al treatment and was highly Al-inducible in root tips. ABCB25 is originated from Streptophyte algae and evolutionarily conserved in land plants. Moreover, silencing HvABCB25 in Al-tolerant XZ16 led to significant suppression of Al tolerance as indicated by significantly reduced root growth and enhanced Al accumulation in root cells. Conversely, HvABCB25-overexpressed plants and Golden Promise showed similar Al content in whole roots and in cell sap, but the overexpression lines exhibited significantly higher Al-induced relative root growth and dry weight. Al florescence in cytosol of root cells were significantly less in overexpression lines than that in GP. These results indicated that overexpressing HvABCB25 may be responsible for Al detoxification via vacuolar Al sequestration in barley roots, providing useful insight into the genetic basis for a new Al detoxification mechanism towards plant Al tolerance in acid soils.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Dezhi Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Eva Vincze
- Department of Molecular Biology and Genetics, University of Aarhus, Fosøgsvej 1, DK-4200 Slagelse, Denmark
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Feng X, Liu W, Dai H, Qiu Y, Zhang G, Chen ZH, Wu F. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6057-6073. [PMID: 32588054 DOI: 10.1093/jxb/eraa290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 05/10/2023]
Abstract
Aluminum (Al) toxicity is the primary limiting factor of crop production on acid soils. Tibetan wild barley germplasm is a valuable source of potential genes for breeding barley with acid and Al tolerance. We performed microRNA and RNA sequencing using wild (XZ16, Al-tolerant; XZ61, Al-sensitive) and cultivated (Dayton, Al-tolerant) barley. A novel homeobox-leucine zipper transcription factor, HvHOX9, was identified as a target gene of miR166b and functionally characterized. HvHOX9 was up-regulated by Al stress in XZ16 (but unchanged in XZ61 and Dayton) and was significantly induced only in root tip. Phylogenetic analysis showed that HvHOX9 is most closely related to wheat TaHOX9 and orthologues of HvHOX9 are present in the closest algal relatives of Zygnematophyceae. Barley stripe mosaic virus-induced gene silencing of HvHOX9 in XZ16 led to significantly increased Al sensitivity but did not affect its sensitivity to other metals and low pH. Disruption of HvHOX9 did not change Al concentration in the root cell sap, but led to more Al accumulation in root cell wall after Al exposure. Silencing of HvHOX9 decreased H+ influx after Al exposure. Our findings suggest that miR166b/HvHOX9 play a critical role in Al tolerance by decreasing root cell wall Al binding and increasing apoplastic pH for Al detoxification in the root.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Huaxin Dai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yue Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Cheng X, Fang T, Zhao E, Zheng B, Huang B, An Y, Zhou P. Protective roles of salicylic acid in maintaining integrity and functions of photosynthetic photosystems for alfalfa (Medicago sativa L.) tolerance to aluminum toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:570-578. [PMID: 32846392 DOI: 10.1016/j.plaphy.2020.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Aluminum (Al) can be detrimental to plant growth in areas with Al contamination. The objective of this study was to determine whether salicylic acid (SA) can improve plant tolerance to Al stress by mitigating Al toxicity for chloroplasts and photosynthetic systems in alfalfa (Medicago sativa L.). Plants were treated with Al (100 μM) for 3 d in a hydroponic system. The content of Al increased in leaves treated with Al, resulting in damage and deformation of chloroplasts. In Al-damaged leaves, chloroplast envelopes and starch granules disappeared; the lamellae and stroma lamella were loosely arranged and indistinguishable, and the number of grana was reduced; a large number of small plastoglobules appeared. Foliar spraying of 15 μM SA reduced Al content in roots and leaves and alleviated Al damages in chloroplasts. With 15 μM SA treatments, the chloroplast shape returned to a flat ellipsoid, thylakoids were arranged closely and regularly, chloroplasts had intact starch granules, and small plastoglobules disappeared. SA-treated plants had significantly higher aboveground biomass than the untreated control exposed to Al stress. Photosynthetic index and gene expression analyses demonstrated that SA could alleviate adverse effects of Al toxicity by increasing light capture efficiency, promoting electron transport in the photosynthetic electron transport chain and thylakoid lumen deacidification, and promoting synthesis of aenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). SA played protective roles in maintaining integrity and functions of photosystems in photosynthesis for plant tolerance to Al stress.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingyu Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Enhua Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baogang Zheng
- Zealquest Scientific Technology Co., Ltd., Shanghai, 200062, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Jersey, NJ, 08901, USA
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China.
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Reis ARD, Lisboa LAM, Reis HPG, Barcelos JPDQ, Santos EF, Santini JMK, Venâncio Meyer-Sand BR, Putti FF, Galindo FS, Kaneko FH, Barbosa JZ, Paixão AP, Junior EF, de Figueiredo PAM, Lavres J. Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:377-390. [PMID: 30059870 DOI: 10.1016/j.plaphy.2018.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 05/20/2023]
Abstract
Aluminium (Al) is a toxic element for plants living in soils with acidic pH values, and it causes reductions in the roots and shoots development. High Al concentrations can cause physiological and structural changes, leading to symptoms of toxicity in plant tissue. The aim of this study was to describe the Al toxicity in soybean plants through physiological, nutritional, and ultrastructure analyses. Plants were grown in nutrient solution containing increasing Al concentrations (0; 0.05; 0.1; 1.0, 2.0 and 4.0 mmol L-1). The Al toxicity in the soybean plants was characterized by nutritional, anatomical, physiological, and biochemical analyses. The carbon dioxide assimilation rates and stomatal conductance were not affected by the Al. However, the capacity for internal carbon use decreased, and the transpiration rate increased, resulting in increased root biomass at the lowest Al concentration in the nutrient solution. The soybean plants exposed to the highest Al concentration exhibited lower root and shoot biomass. The nitrate reductase and urease activities decreased with the increasing Al concentration, indicating that nitrogen metabolism was halted. The superoxide dismutase and peroxidase activities increased with the increasing Al availability in the nutrient solution, and they were higher in the roots, showing their role in Al detoxification. Despite presenting external lesions characterized by a damaged root cap, the root xylem and phloem diameters were not affected by the Al. However, the leaf xylem diameter showed ultrastructural alterations under higher Al concentrations in nutrient solution. These results have contributed to our understanding of several physiological, biochemical and histological mechanisms of Al toxicity in soybean plants.
Collapse
Affiliation(s)
- André Rodrigues Dos Reis
- São Paulo State University (UNESP), Postal Code 17602-496, Tupã, SP, Brazil; São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil.
| | | | | | | | | | | | | | | | | | - Flavio Hiroshi Kaneko
- Federal University of Triângulo Mineiro (UFTM), Postal Code 38280-000, Iturama, MG, Brazil
| | | | - Amanda Pereira Paixão
- São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | - Enes Furlani Junior
- São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | | | - José Lavres
- University of São Paulo (USP), Postal Code 13416-000, Piracicaba, SP, Brazil
| |
Collapse
|