1
|
Zemanová V, Lhotská M, Novák M, Hnilička F, Popov M, Pavlíková D. Multicontamination Toxicity Evaluation in the Model Plant Lactuca sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1356. [PMID: 38794427 PMCID: PMC11125215 DOI: 10.3390/plants13101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Many contaminated soils contain several toxic elements (TEs) in elevated contents, and plant-TE interactions can differ from single TE contamination. Therefore, this study investigated the impact of combined contamination (As, Cd, Pb, Zn) on the physiological and metabolic processes of lettuce. After 45 days of exposure, TE excess in soil resulted in the inhibition of root and leaf biomass by 40 and 48%, respectively. Oxidative stress by TE accumulation was indicated by markers-malondialdehyde and 5-methylcytosine-and visible symptoms of toxicity (leaf chlorosis, root browning) and morpho-anatomical changes, which were related to the change in water regime (water potential decrease). An analysis of free amino acids (AAs) indicated that TEs disturbed N and C metabolism, especially in leaves, increasing the total content of free AAs and their families. Stress-induced senescence by TEs suggested changes in gas exchange parameters (increase in transpiration rate, stomatal conductance, and intercellular CO2 concentration), photosynthetic pigments (decrease in chlorophylls and carotenoids), a decrease in water use efficiency, and the maximum quantum yield of photosystem II. These results confirmed that the toxicity of combined contamination significantly affected the processes of lettuce by damaging the antioxidant system and expressing higher leaf sensitivity to TE multicontamination.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Marie Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Milan Novák
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Marek Popov
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
2
|
Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG. Activating stress memory: eustressors as potential tools for plant breeding. PLANT CELL REPORTS 2022; 41:1481-1498. [PMID: 35305133 PMCID: PMC8933762 DOI: 10.1007/s00299-022-02858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.
Collapse
Affiliation(s)
- A L Villagómez-Aranda
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - A A Feregrino-Pérez
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - L F García-Ortega
- Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - M M González-Chavira
- Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico
| | - I Torres-Pacheco
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - R G Guevara-González
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
| |
Collapse
|
3
|
Tomczyk PP, Kiedrzyński M, Forma E, Zielińska KM, Kiedrzyńska E. Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids. Sci Rep 2022; 12:8322. [PMID: 35585117 PMCID: PMC9117213 DOI: 10.1038/s41598-022-12125-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Polyploidization drives the evolution of grasses and can result in epigenetic changes, which may have a role in the creation of new evolutionary lineages and ecological speciation. As such changes may be inherited, they can also influence adaptation to the environment. Populations from different regions and climates may also differ epigenetically; however, this phenomenon is poorly understood. The present study analyzes the effect of climatic stress on global DNA methylation based on a garden collection of two related mountain grasses (the narrow endemic diploid Festuca tatrae and the more widely distributed mixed-ploidy F. amethystina) with different geographic ranges and ecological niches. A lower level of DNA methylation was observed for F. tatrae, while a higher mean level was obtained for the diploid and tetraploid of F. amethystina; with the tetraploids having a higher level of global methylated DNA than the diploids. The weather conditions (especially insolation) measured 24 h prior to sampling appeared to have a closer relationship with global DNA methylation level than those observed seven days before sampling. Our findings suggest that the level of methylation during stress conditions (drought, high temperature and high insolation) may be significantly influenced by the ploidy level and bioclimatic provenance of specimens; however an important role may also be played by the intensity of stress conditions in a given year.
Collapse
Affiliation(s)
- Przemysław P Tomczyk
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237, Lodz, Poland. .,The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland.
| | - Marcin Kiedrzyński
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Katarzyna M Zielińska
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237, Lodz, Poland
| | - Edyta Kiedrzyńska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Lodz, Poland.,UNESCO Chair On Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
4
|
Whole-Genome DNA Methylation Analysis in Hydrogen Peroxide Overproducing Transgenic Tobacco Resistant to Biotic and Abiotic Stresses. PLANTS 2021; 10:plants10010178. [PMID: 33477999 PMCID: PMC7835756 DOI: 10.3390/plants10010178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/09/2023]
Abstract
Epigenetic regulation is a key component of stress responses, acclimatization and adaptation processes in plants. DNA methylation is a stable mark plausible for the inheritance of epigenetic traits, such that it is a potential scheme for plant breeding. However, the effect of modulators of stress responses, as hydrogen peroxide (H2O2), in the methylome status has not been elucidated. A transgenic tobacco model to the CchGLP gene displayed high H2O2 endogen levels correlated with biotic and abiotic stresses resistance. The present study aimed to determine the DNA methylation status changes in the transgenic model to obtain more information about the molecular mechanism involved in resistance phenotypes. The Whole-genome bisulfite sequencing analysis revealed a minimal impact of overall levels and distribution of methylation. A total of 9432 differential methylated sites were identified in distinct genome regions, most of them in CHG context, with a trend to hypomethylation. Of these, 1117 sites corresponded to genes, from which 83 were also differentially expressed in the plants. Several genes were associated with respiration, energy, and calcium signaling. The data obtained highlighted the relevance of the H2O2 in the homeostasis of the system in stress conditions, affecting at methylation level and suggesting an association of the H2O2 in the physiological adaptation to stress functional linkages may be regulated in part by DNA methylation.
Collapse
|
5
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
6
|
Borkiewicz L, Polkowska-Kowalczyk L, Cieśla J, Sowiński P, Jończyk M, Rymaszewski W, Szymańska KP, Jaźwiec R, Muszyńska G, Szczegielniak J. Expression of maize calcium-dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II. PHYSIOLOGIA PLANTARUM 2020; 168:38-57. [PMID: 30714160 DOI: 10.1111/ppl.12938] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
In plants, CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs/CPKs) are involved in calcium signaling in response to endogenous and environmental stimuli. Here, we report that ZmCPK11, one of maize CDPKs, participates in salt stress response and tolerance. Salt stress induced expression and upregulated the activity of ZmCPK11 in maize roots and leaves. Activation of ZmCPK11 upon salt stress was also observed in roots and leaves of transgenic Arabidopsis plants expressing ZmCPK11. The transgenic plants showed a long-root phenotype under control conditions and a short-root phenotype under NaCl, abscisic acid (ABA) or jasmonic acid (JA) treatment. Analysis of ABA and JA content in roots indicated that ZmCPK11 can mediate root growth by regulating the levels of these phytohormones. Moreover, 4-week-old transgenic plants were more tolerant to salinity than the wild-type plants. Their leaves were less chlorotic and showed weaker symptoms of senescence accompanied by higher chlorophyll content and higher quantum efficiency of photosystem II. The expression of Na+ /K+ transporters (HKT1, SOS1 and NHX1) and transcription factors (CBF1, CBF2, CBF3, ZAT6 and ZAT10) with known links to salinity tolerance was upregulated in roots of the transgenic plants upon salt stress. Furthermore, the transgenic plants accumulated less Na+ in roots and leaves under salinity, and showed a higher K+ /Na+ ratio in leaves. These results show that the improved salt tolerance in ZmCPK11-transgenic plants could be due to an upregulation of genes involved in the maintenance of intracellular Na+ and K+ homeostasis and a protection of photosystem II against damage.
Collapse
Affiliation(s)
- Lidia Borkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Molecular Biology, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Wojciech Rymaszewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna P Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Radosław Jaźwiec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grażyna Muszyńska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Szczegielniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Total DNA Methylation Changes Reflect Random Oxidative DNA Damage in Gliomas. Cells 2019; 8:cells8091065. [PMID: 31514401 PMCID: PMC6770701 DOI: 10.3390/cells8091065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
DNA modifications can be used to monitor pathological processes. We have previously shown that estimating the amount of the main DNA epigenetic mark, 5-methylcytosine (m5C), is an efficient and reliable way to diagnose brain tumors, hypertension, and other diseases. Abnormal increases of reactive oxygen species (ROS) are a driving factor for mutations that lead to changes in m5C levels and cancer evolution. 8-oxo-deoxyguanosine (8-oxo-dG) is a specific marker of ROS-driven DNA-damage, and its accumulation makes m5C a hotspot for mutations. It is unknown how m5C and 8-oxo-dG correlate with the malignancy of gliomas. We analyzed the total contents of m5C and 8-oxo-dG in DNA from tumor tissue and peripheral blood samples from brain glioma patients. We found an opposite relationship in the amounts of m5C and 8-oxo-dG, which correlated with glioma grade in the way that low level of m5C and high level of 8-oxo-dG indicated increased glioma malignancy grade. Our results could be directly applied to patient monitoring and treatment protocols for gliomas, as well as bolster previous findings, suggesting that spontaneously generated ROS react with m5C. Because of the similar mechanisms of m5C and guanosine oxidation, we concluded that 8-oxo-dG could also predict glioma malignancy grade and global DNA demethylation in cancer cells.
Collapse
|
8
|
Rakei A, Maali-Amiri R, Zeinali H, Ranjbar M. DNA methylation and physio-biochemical analysis of chickpea in response to cold stress. PROTOPLASMA 2016; 253:61-76. [PMID: 25820678 DOI: 10.1007/s00709-015-0788-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/27/2015] [Indexed: 05/27/2023]
Abstract
Cold stress (CS) signals are translated into physiological changes as products of direct and/or indirect of gene expression regulated by different factors like DNA methylation. In this study, some of these factors were comparatively studied in two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold-tolerant genotype, and ILC533, cold susceptible one) under control (23 °C) and days 1, 3, and 6 after exposing the seedlings to CS (4 °C). Under CS, tolerant genotype prevented H2O2 accumulation which led to a decrease in damage indices (malondialdehyde and electrolyte leakage index) compared to susceptible one. The significant activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and polyphenol oxidase) along with a significant proportion of change in DNA methylation/demethylation patterns were often effective factors in preserving cell against cold-induced oxidative stress. Chickpea cells in response to CS changed access to their genome as the number of bands without change from day 1 to day 6 of exposure to CS particularly in tolerant genotype was decreased. During CS, the methylation level was higher compared to demethylation (29.05 vs 19.79 %) in tolerant genotype and (27.92 vs 22.09 %) in susceptible one. However, for prolonged periods of CS, changes in demethylated bands in tolerant genotype were higher than that of in susceptible one (9.24 vs 4.13 %), indicating higher potential for activation of CS responsive genes. Such a status along with higher activity of antioxidants and less damage indices could be related to cold tolerance (CT) mechanisms in chickpea. Sequencing analysis confirmed the important role of some specific DNA sequences in creating CT with possible responsive components involved in CS. Thus, dynamic assessment using multi-dimensional approaches allows us to progressively fill in the gaps between physio-biochemical and molecular events in creating CT, to comprehend better the nature of the plant stress response and molecular mechanisms behind.
Collapse
Affiliation(s)
- Aida Rakei
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| | - Hassan Zeinali
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 46168-49767, Iran
| |
Collapse
|
9
|
Probst AV, Mittelsten Scheid O. Stress-induced structural changes in plant chromatin. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:8-16. [PMID: 26042538 DOI: 10.1016/j.pbi.2015.05.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 05/20/2023]
Abstract
Stress defense in plants is elaborated at the level of protection and adaptation. Dynamic changes in sophisticated chromatin substructures and concomitant transcriptional changes play an important role in response to stress, as illustrated by the transient rearrangement of compact heterochromatin structures or the modulation of chromatin composition and modification upon stress exposure. To connect cytological, developmental, and molecular data around stress and chromatin is currently an interesting, multifaceted, and sometimes controversial field of research. This review highlights some of the most recent findings on nuclear reorganization, histone variants, histone chaperones, DNA- and histone modifications, and somatic and meiotic heritability in connection with stress.
Collapse
Affiliation(s)
- Aline V Probst
- CNRS UMR6293 - INSERM U1103 - Clermont University, GReD, Campus Universitaire des Cézeaux, 10 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
10
|
Barciszewska AM, Gurda D, Głodowicz P, Nowak S, Naskręt-Barciszewska MZ. A New Epigenetic Mechanism of Temozolomide Action in Glioma Cells. PLoS One 2015; 10:e0136669. [PMID: 26309255 PMCID: PMC4550362 DOI: 10.1371/journal.pone.0136669] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 01/15/2023] Open
Abstract
Temozolomide (TMZ) is an oral alkylating chemotherapeutic agent that prolongs the survival of patients with glioblastoma (GBM). Despite that high TMZ potential, progression of disease and recurrence are still observed. Therefore a better understanding of the mechanism of action of this drug is necessary and may allow more durable benefit from its anti-glioma properties. Using nucleotide post-labelling method and separation on thin-layer chromatography we measured of global changes of 5-methylcytosine (m5C) in DNA of glioma cells treated with TMZ. Although m5C is not a product of TMZ methylation reaction of DNA, we analysed the effects of the drug action on different glioma cell lines through global changes at the level of the DNA main epigenetic mark. The first effect of TMZ action we observed is DNA hypermethylation followed by global demethylation. Therefore an increase of DNA methylation and down regulation of some genes expression can be ascribed to activation of DNA methyltransferases (DNMTs). On the other hand hypomethylation is induced by oxidative stress and causes uncontrolled expression of pathologic protein genes. The results of brain tumours treatment with TMZ suggest the new mechanism of modulation epigenetic marker in cancer cells. A high TMZ concentration induced a significant increase of m5C content in DNA in the short time, but a low TMZ concentration at longer time hypomethylation is observed for whole range of TMZ concentrations. Therefore TMZ administration with low doses of the drug and short time should be considered as optimal therapy.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60–355, Poznan, Poland
| | - Dorota Gurda
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61–704, Poznan, Poland
| | - Paweł Głodowicz
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61–704, Poznan, Poland
| | - Stanisław Nowak
- Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60–355, Poznan, Poland
| | | |
Collapse
|