1
|
Arnaiz A, Vallejo-García LJ, Vallejos S, Diaz I. Isolation and Quantification of Mandelonitrile from Arabidopsis thaliana Using Gas Chromatography/Mass Spectrometry. Bio Protoc 2023; 13:e4700. [PMID: 37397798 PMCID: PMC10308191 DOI: 10.21769/bioprotoc.4700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 04/15/2023] [Indexed: 07/04/2023] Open
Abstract
Mandelonitrile is a nitrogen-containing compound, considered an essential secondary metabolite. Chemically, it is a cyanohydrin derivative of benzaldehyde, with relevant functions in different physiological processes including defense against phytophagous arthropods. So far, procedures for detecting mandelonitrile have been effectively applied in cyanogenic plant species such as Prunus spp. Nevertheless, its presence in Arabidopsis thaliana , considered a non-cyanogenic species, has never been determined. Here, we report the development of an accurate protocol for mandelonitrile quantification in A. thaliana within the context of A. thaliana -spider mite interaction. First, mandelonitrile was isolated from Arabidopsis rosettes using methanol; then, it was derivatized by silylation to enhance detection and, finally, it was quantified using gas chromatography-mass spectrometry. The selectivity and sensitivity of this method make it possible to detect low levels of mandelonitrile (LOD 3 ppm) in a plant species considered non-cyanogenic that, therefore, will have little to no cyanogenic compounds, using a small quantity of starting material (≥100 mg).
Collapse
Affiliation(s)
- Ana Arnaiz
- Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | | | - Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de BiotecnologíaBiología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Arnaiz A, Santamaria ME, Rosa-Diaz I, Garcia I, Dixit S, Vallejos S, Gotor C, Martinez M, Grbic V, Diaz I. Hydroxynitrile lyase defends Arabidopsis against Tetranychus urticae. PLANT PHYSIOLOGY 2022; 189:2244-2258. [PMID: 35474139 PMCID: PMC9342993 DOI: 10.1093/plphys/kiac170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 05/31/2023]
Abstract
Plant-pest interactions involve multifaceted processes encompassing a complex crosstalk of pathways, molecules, and regulators aimed at overcoming defenses developed by each interacting organism. Among plant defensive compounds against phytophagous arthropods, cyanide-derived products are toxic molecules that directly target pest physiology. Here, we identified the Arabidopsis (Arabidopsis thaliana) gene encoding hydroxynitrile lyase (AtHNL, At5g10300) as one gene induced in response to spider mite (Tetranychus urticae) infestation. AtHNL catalyzes the reversible interconversion between cyanohydrins and derived carbonyl compounds with free cyanide. AtHNL loss- and gain-of-function Arabidopsis plants showed that specific activity of AtHNL using mandelonitrile as substrate was higher in the overexpressing lines than in wild-type (WT) and mutant lines. Concomitantly, mandelonitrile accumulated at higher levels in mutant lines than in WT plants and was significantly reduced in the AtHNL overexpressing lines. After mite infestation, mandelonitrile content increased in WT and overexpressing plants but not in mutant lines, while hydrogen cyanide (HCN) accumulated in the three infested Arabidopsis genotypes. Feeding bioassays demonstrated that the AtHNL gene participated in Arabidopsis defense against T. urticae. The reduced leaf damage detected in the AtHNL overexpressing lines reflected the mite's reduced ability to feed on leaves, which consequently restricted mite fecundity. In turn, mites upregulated TuCAS1 encoding β-cyanoalanine synthase to avoid the respiratory damage produced by HCN. This detoxification effect was functionally demonstrated by reduced mite fecundity observed when dsRNA-TuCAS-treated mites fed on WT plants and hnl1 mutant lines. These findings add more players in the Arabidopsis-T. urticae interplay to overcome mutual defenses.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - Irene Garcia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Sameer Dixit
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Saul Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos 09001, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Vojislava Grbic
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
3
|
Sánchez-Ramos M, Marquina-Bahena S, Alvarez L, Román-Guerrero A, Bernabé-Antonio A, Cruz-Sosa F. Phytochemical, Pharmacological, and Biotechnological Study of Ageratina pichinchensis: A Native Species of Mexico. PLANTS 2021; 10:plants10102225. [PMID: 34686034 PMCID: PMC8540463 DOI: 10.3390/plants10102225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Ageratina pichinchensis (Asteraceae) has been used for a long time in traditional Mexican medicine for treating different skin conditions and injuries. This review aimed to provide an up-to-date view regarding the traditional uses, chemical composition, and pharmacological properties (in vitro, in vivo, and clinical trials) that have been achieved using crude extracts, fractions, or pure compounds. Moreover, for a critical evaluation of the published literature, key databases (Pubmed, Science Direct, and SciFinder, among others) were systematically searched using keywords to retrieve relevant publications on this plant. Studies that reported on crude extracts, fractions, or isolated pure compounds of A. pichinchensis have found a varied range of biological effects, including antibacterial, curative, antiulcer, antifungal, and anti-inflammatory activities. Phytochemical analyses of different parts of A. pichinchensis revealed 47 compounds belonging to chromenes, furans, glycosylated flavonoids, terpenoids, and essential oils. Furthermore, biotechnological studies of A. pichinchensis such as callus and cell suspension cultures have provided information for future research perspectives to improve the production of valuable bioactive compounds.
Collapse
Affiliation(s)
- Mariana Sánchez-Ramos
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de México C.P. 09310, Mexico; (M.S.-R.); (A.R.-G.)
| | - Silvia Marquina-Bahena
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico; (S.M.-B.); (L.A.)
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico; (S.M.-B.); (L.A.)
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de México C.P. 09310, Mexico; (M.S.-R.); (A.R.-G.)
| | - Antonio Bernabé-Antonio
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km. 15.5, Carretera Guadalajara-Nogales, Col. Las Agujas, Zapopan C.P. 45020, Mexico
- Correspondence: (A.B.-A.); (F.C.-S.)
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de México C.P. 09310, Mexico; (M.S.-R.); (A.R.-G.)
- Correspondence: (A.B.-A.); (F.C.-S.)
| |
Collapse
|
4
|
Metabolic Profiling of PGPR-Treated Tomato Plants Reveal Priming-Related Adaptations of Secondary Metabolites and Aromatic Amino Acids. Metabolites 2020; 10:metabo10050210. [PMID: 32443694 PMCID: PMC7281251 DOI: 10.3390/metabo10050210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Plant growth–promoting rhizobacteria (PGPR) are beneficial microbes in the rhizosphere that can directly or indirectly stimulate plant growth. In addition, some can prime plants for enhanced defense against a broad range of pathogens and insect herbivores. In this study, four PGPR strains (Pseudomonas fluorescens N04, P. koreensis N19, Paenibacillus alvei T19, and Lysinibacillus sphaericus T22) were used to induce priming in Solanum lycopersicum (cv. Moneymaker) plants. Plants were inoculated with each of the four PGPRs, and plant tissues (roots, stems, and leaves) were harvested at 24 h and 48 h post-inoculation. Methanol-extracted metabolites were analyzed by ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). Chemometric methods were applied to mine the data and characterize the differential metabolic profiles induced by the PGPR. The results revealed that all four strains induced defense-related metabolic reprogramming in the plants, characterized by dynamic changes to the metabolomes involving hydroxycinnamates, benzoates, flavonoids, and glycoalkaloids. In addition, targeted analysis of aromatic amino acids indicated differential quantitative increases or decreases over a two-day period in response to the four PGPR strains. The metabolic alterations point to an altered or preconditioned state that renders the plants primed for enhanced defense responses. The results contribute to ongoing efforts in investigating and unraveling the biochemical processes that define the PGPR priming phenomenon.
Collapse
|
5
|
Djami-Tchatchou AT, Ncube EN, Steenkamp PA, Dubery IA. Similar, but different: structurally related azelaic acid and hexanoic acid trigger differential metabolomic and transcriptomic responses in tobacco cells. BMC PLANT BIOLOGY 2017; 17:227. [PMID: 29187153 PMCID: PMC5706331 DOI: 10.1186/s12870-017-1157-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/08/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plants respond to various stress stimuli by activating an enhanced broad-spectrum defensive ability. The development of novel resistance inducers represents an attractive, alternative crop protection strategy. In this regard, hexanoic acid (Hxa, a chemical elicitor) and azelaic acid (Aza, a natural signaling compound) have been proposed as inducers of plant defense, by means of a priming mechanism. Here, we investigated both the mode of action and the complementarity of Aza and Hxa as priming agents in Nicotiana tabacum cells in support of enhanced defense. RESULTS Metabolomic analyses identified signatory biomarkers involved in the establishment of a pre-conditioned state following Aza and Hxa treatment. Both inducers affected the metabolomes in a similar manner and generated common biomarkers: caffeoylputrescine glycoside, cis-5-caffeoylquinic acid, feruloylglycoside, feruloyl-3-methoxytyramine glycoside and feruloyl-3-methoxytyramine conjugate. Subsequently, quantitative real time-PCR was used to investigate the expression of inducible defense response genes: phenylalanine ammonia lyase, hydroxycinnamoyl CoA quinate transferase and hydroxycinnamoyl transferase to monitor activation of the early phenylpropanoid pathway and chlorogenic acids metabolism, while ethylene response element-binding protein, small sar1 GTPase, heat shock protein 90, RAR1, SGT1, non-expressor of PR genes 1 and thioredoxin were analyzed to report on signal transduction events. Pathogenesis-related protein 1a and defensin were quantified to investigate the activation of defenses regulated by salicylic acid and jasmonic acid respectively. The qPCR results revealed differential expression kinetics and, in general (except for NPR1, Thionin and PR1a), the relative gene expression ratios observed in the Hxa-treated cells were significantly greater than the expression observed in the cells treated with Aza. CONCLUSIONS The results indicate that Aza and Hxa have a similar priming effect through activation of genes involved in the establishment of systemic acquired resistance, associated with enhanced synthesis of hydroxycinnamic acids and related conjugates.
Collapse
Affiliation(s)
| | - Efficient N. Ncube
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006 South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006 South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006 South Africa
| |
Collapse
|
6
|
Finnegan T, Steenkamp PA, Piater LA, Dubery IA. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways. PLoS One 2016; 11:e0163572. [PMID: 27656890 PMCID: PMC5033345 DOI: 10.1371/journal.pone.0163572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/11/2016] [Indexed: 11/19/2022] Open
Abstract
Lipopolysaccharides (LPSs), as MAMP molecules, trigger the activation of signal transduction pathways involved in defence. Currently, plant metabolomics is providing new dimensions into understanding the intracellular adaptive responses to external stimuli. The effect of LPS on the metabolomes of Arabidopsis thaliana cells and leaf tissue was investigated over a 24 h period. Cellular metabolites and those secreted into the medium were extracted with methanol and liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. Multivariate statistical data analyses were used to extract interpretable information from the generated multidimensional LC-MS data. The results show that LPS perception triggered differential changes in the metabolomes of cells and leaves, leading to variation in the biosynthesis of specialised secondary metabolites. Time-dependent changes in metabolite profiles were observed and biomarkers associated with the LPS-induced response were tentatively identified. These include the phytohormones salicylic acid and jasmonic acid, and also the associated methyl esters and sugar conjugates. The induced defensive state resulted in increases in indole-and other glucosinolates, indole derivatives, camalexin as well as cinnamic acid derivatives and other phenylpropanoids. These annotated metabolites indicate dynamic reprogramming of metabolic pathways that are functionally related towards creating an enhanced defensive capacity. The results reveal new insights into the mode of action of LPS as an activator of plant innate immunity, broadens knowledge about the defence metabolite pathways involved in Arabidopsis responses to LPS, and identifies specialised metabolites of functional importance that can be employed to enhance immunity against pathogen infection.
Collapse
Affiliation(s)
- Tarryn Finnegan
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
- CSIR- Biosciences, Natural Products and Agroprocessing Group, Pretoria, 0001, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| |
Collapse
|
7
|
Ncube EN, Steenkamp PA, Madala NE, Dubery IA. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation. Appl Biochem Biotechnol 2016; 179:685-96. [PMID: 26922726 DOI: 10.1007/s12010-016-2024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/18/2016] [Indexed: 11/24/2022]
Abstract
Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.
Collapse
Affiliation(s)
- E N Ncube
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - P A Steenkamp
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa.,CSIR-Biosiences, Pretoria, 0001, South Africa
| | - N E Madala
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - I A Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa.
| |
Collapse
|