1
|
Chirivì D, Betti C. Molecular Links between Flowering and Abiotic Stress Response: A Focus on Poaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:331. [PMID: 36679044 PMCID: PMC9866591 DOI: 10.3390/plants12020331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Extreme temperatures, drought, salinity and soil pollution are the most common types of abiotic stresses crops can encounter in fields; these variations represent a general warning to plant productivity and survival, being more harmful when in combination. Plant response to such conditions involves the activation of several molecular mechanisms, starting from perception to signaling, transcriptional reprogramming and protein modifications. This can influence the plant's life cycle and development to different extents. Flowering developmental transition is very sensitive to environmental stresses, being critical to reproduction and to agricultural profitability for crops. The Poacee family contains some of the most widespread domesticated plants, such as wheat, barley and rice, which are commonly referred to as cereals and represent a primary food source. In cultivated Poaceae, stress-induced modifications of flowering time and development cause important yield losses by directly affecting seed production. At the molecular level, this reflects important changes in gene expression and protein activity. Here, we present a comprehensive overview on the latest research investigating the molecular pathways linking flowering control to osmotic and temperature extreme conditions in agronomically relevant monocotyledons. This aims to provide hints for biotechnological strategies that can ensure agricultural stability in ever-changing climatic conditions.
Collapse
|
2
|
Preston JC, Fjellheim S. Flowering time runs hot and cold. PLANT PHYSIOLOGY 2022; 190:5-18. [PMID: 35274728 PMCID: PMC9434294 DOI: 10.1093/plphys/kiac111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 05/16/2023]
Abstract
Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
| |
Collapse
|
3
|
Shwartz I, Yahav C, Kovetz N, Levy M, Israeli A, Bar M, Duval KL, Krall EG, Teboul N, Jiménez-Gómez JM, Deal RB, Ori N. The VIL gene CRAWLING ELEPHANT controls maturation and differentiation in tomato via polycomb silencing. PLoS Genet 2022; 18:e1009633. [PMID: 35255095 PMCID: PMC8939788 DOI: 10.1371/journal.pgen.1009633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/22/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
VERNALIZATION INSENSITIVE 3-LIKE (VIL) proteins are PHD-finger proteins that recruit the repressor complex Polycomb Repressive Complex 2 (PRC2) to the promoters of target genes. Most known VIL targets are flowering repressor genes. Here, we show that the tomato VIL gene CRAWLING ELEPHANT (CREL) promotes differentiation throughout plant development by facilitating the trimethylation of Histone H3 on lysine 27 (H3K27me3). We identified the crel mutant in a screen for suppressors of the simple-leaf phenotype of entire (e), a mutant in the AUX/IAA gene ENTIRE/SlIAA9, involved in compound-leaf development in tomato. crel mutants have increased leaf complexity, and suppress the ectopic blade growth of e mutants. In addition, crel mutants are late flowering, and have delayed and aberrant stem, root and flower development. Consistent with a role for CREL in recruiting PRC2, crel mutants show drastically reduced H3K27me3 enrichment at approximately half of the 14,789 sites enriched in wild-type plants, along with upregulation of many underlying genes. Interestingly, this reduction in H3K27me3 across the genome in crel is also associated with gains in H3K27me3 at a smaller number of sites that normally have modest levels of the mark in wild-type plants, suggesting that PRC2 activity is no longer limiting in the absence of CREL. Our results uncover a wide role for CREL in plant and organ differentiation in tomato and suggest that CREL is required for targeting PRC2 activity to, and thus silencing, a specific subset of polycomb targets. Plants form organs continuously throughout their lives, and the number and shape of their organs is determined in a flexible manner according to the internal and external circumstances. Alongside this flexibility, plants maintain basic developmental programs to ensure proper functioning. Among the ways by which plants achieve flexible development is by tuning the pace of their maturation and differentiation, at both the plant and organ levels. One of the ways plants regulate the rate of maturation and differentiation is by changing gene expression. Here, we identified a gene that promotes plant and organ maturation and differentiation. This gene, CRAWLING ELEPHANT (CREL) acts by bringing a repressing complex to target genes. We show the importance of CREL in multiple developmental processes and in the expression of multiple genes throughout the tomato genome.
Collapse
Affiliation(s)
- Ido Shwartz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chen Yahav
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Neta Kovetz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Matan Levy
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Israeli
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Katherine L. Duval
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ellen G. Krall
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Naama Teboul
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Roger B. Deal
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (RD); (NO)
| | - Naomi Ori
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail: (RD); (NO)
| |
Collapse
|
4
|
Zhou Y, Myat AA, Liang C, Meng Z, Guo S, Wei Y, Sun G, Wang Y, Zhang R. Insights Into MicroRNA-Mediated Regulation of Flowering Time in Cotton Through Small RNA Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:761244. [PMID: 35432420 PMCID: PMC9010036 DOI: 10.3389/fpls.2022.761244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
The timing of flowering is a key determinant for plant reproductive. It has been demonstrated that microRNAs (miRNAs) play an important role in transition from the vegetative to reproductive stage in cotton; however, knowledge remains limited about the regulatory role of miRNAs involved in flowering time regulation in cotton. To elucidate the molecular basis of miRNAs in response to flowering time in cotton, we performed high-throughput small RNA sequencing at the fifth true leaf stage. We identified 56 and 43 miRNAs that were significantly up- and downregulated in two elite early flowering cultivars (EFC) compared with two late flowering cultivars (LFC), respectively. The miRNA targets by RNA sequencing analysis showed that GhSPL4 in SBP transcription factor family targeted by GhmiR156 was significantly upregulated in EFCs. Co-expression regulatory network analysis (WGCNA) revealed that GhSOC1, GhAP1, GhFD, GhCOL3, and GhAGL16 act as node genes in the auxin- and gibberellin-mediated flowering time regulatory networks in cotton. Therefore, elucidation of miRNA-mediated flowering time regulatory network will contribute to our understanding of molecular mechanisms underlying flowering time in cotton.
Collapse
|
5
|
Samarth, Lee R, Kelly D, Turnbull MH, Macknight R, Poole AM, Jameson PE. A novel TFL1 gene induces flowering in the mast seeding alpine snow tussock, Chionochloa pallens (Poaceae). Mol Ecol 2021; 31:822-838. [PMID: 34779078 DOI: 10.1111/mec.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Masting, the synchronous, highly variable flowering across years by a population of perennial plants, has been reported to be precipitated by various factors including nitrogen levels, drought conditions, and spring and summer temperatures. However, the molecular mechanism leading to the initiation of flowering in masting plants in particular years remains largely unknown, despite the potential impact of climate change on masting phenology. We studied genes controlling flowering in the alpine snow tussock Chionochloa pallens (Poaceae), a strongly masting perennial grass. We used a range of in situ and manipulated plants to obtain leaf samples from tillers (shoots) which subsequently remained vegetative or flowered. Here, we show that a novel orthologue of TERMINAL FLOWER 1 (TFL1; normally a repressor of flowering in other species) promotes the induction of flowering in C. pallens (hence Anti-TFL1), a conclusion supported by structural, functional and expression analyses. Global transcriptomic analysis indicated differential expression of CpTPS1, CpGA20ox1, CpREF6 and CpHDA6, emphasizing the role of endogenous cues and epigenetic regulation in terms of responsiveness of plants to initiate flowering. Our molecular-based study provides insights into the cellular mechanism of flowering in masting plants and will supplement ecological and statistical models to predict how masting will respond to global climate change.
Collapse
Affiliation(s)
- Samarth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Richard Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Anthony M Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
6
|
Hirsz D, Dixon LE. The Roles of Temperature-Related Post-Transcriptional Regulation in Cereal Floral Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112230. [PMID: 34834593 PMCID: PMC8620327 DOI: 10.3390/plants10112230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Temperature is a critical environmental signal in the regulation of plant growth and development. The temperature signal varies across a daily 24 h period, between seasons and stochastically depending on local environmental events. Extracting important information from these complex signals has led plants to evolve multiple temperature responsive regulatory mechanisms at the molecular level. In temperate cereals, we are starting to identify and understand these molecular mechanisms. In addition, we are developing an understanding of how this knowledge can be used to increase the robustness of crop yield in response to significant changes in local and global temperature patterns. To enable this, it is becoming apparent that gene regulation, regarding expression and post-transcriptional regulation, is crucial. Large transcriptomic studies are identifying global changes in spliced transcript variants and regulatory non-coding RNAs in response to seasonal and stress temperature signals in many of the cereal crops. Understanding the functions of these variants and targets of the non-coding RNAs will greatly increase how we enable the adaptation of crops. This review considers our current understanding and areas for future development.
Collapse
|
7
|
Li M, Kennedy A, Huybrechts M, Dochy N, Geuten K. The Effect of Ambient Temperature on Brachypodium distachyon Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1011. [PMID: 31497030 PMCID: PMC6712961 DOI: 10.3389/fpls.2019.01011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 05/05/2023]
Abstract
Due to climate change, the effect of temperature on crops has become a global concern. It has been reported that minor changes in temperature can cause large decreases in crop yield. While not a crop, the model Brachypodium distachyon can help to efficiently investigate ambient temperature responses of temperate grasses, which include wheat and barley. Here, we use different accessions to explore the effect of ambient temperature on Brachypodium phenology. We recorded leaf initiation, heading time, leaf and branch number at heading, seed set time, seed weight, seed size, seed dormancy, and seed germination at different temperatures. We found that warmer temperatures promote leaf initiation so that leaf number at heading is positively correlated to temperature. Heading time is not correlated to temperature but accessions show an optimal temperature at which heading is earliest. Cool temperatures prolong seed maturation which increases seed weight. The progeny seeds of plants grown at these cool ambient temperatures show stronger dormancy, while imbibition of seeds at low temperature improves germination. Among all developmental stages, it is the duration of seed maturation that is most sensitive to temperature. The results we found reveal that temperature responses in Brachypodium are highly conserved with temperate cereals, which makes Brachypodium a good model to explore temperature responsive pathways in temperate grasses.
Collapse
Affiliation(s)
| | | | | | | | - Koen Geuten
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Mohan V, Borovsky Y, Kamara I, Zemach H, Paran I. CaVIL1, a plant homeodomain gene that promotes flowering in pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2639-2649. [PMID: 30194521 DOI: 10.1007/s00122-018-3179-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
CaVIL1 is a homolog of VIL1, a regulator of vernalization response in Arabidopsis and acts as a flowering promoter in pepper which does not respond to vernalization and photoperiod. As part of our goal to study the genetic and molecular basis of transition to flowering in pepper, we isolated the late-flowering mutant E-2698. Aside from late flowering, multiple pleiotropic alterations of the shoot structure, such as enlarged and distorted leaves, weak apical dominance, and reduced angle of the lateral branches were observed, indicating a broad role for the mutated gene in pepper development. Genetic mapping and sequence analyses revealed that the disrupted gene in E-2698 is the pepper homolog of VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1) that acts as a regulator of vernalization in Arabidopsis through chromatin modification. The pepper gene, CaVIL1, contains a plant homeodomain motif associated with chromatin modification and a VERNALIZATION INSENSITIVE 3-interacting domain that is truncated in E-2698 and in two other allelic mutants. Because pepper flowering does not respond to vernalization, we postulate that CaVIL1 regulates flowering time via chromatin modification of unknown targets. Expression analysis indicated that CaVIL1 activates the flowering promoter CaFLOWERING LOCUS T and represses the flowering repressor CaAPETALA2. Furthermore, CaVIL1 represses several genes from the FLOWERING LOCUS C (FLC)-LIKE clade that are clustered together in the pepper genome. This indicates their possible involvement in flowering regulation in this species. Our results show that CaVIL1 is a major regulator of flowering and interacts with other flowering promoters and repressors, as well as with FLC-LIKE genes whose function in flowering regulation is not yet known in pepper.
Collapse
Affiliation(s)
- Vijee Mohan
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Itzhak Kamara
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Ilan Paran
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
9
|
Liu H, Able AJ, Able JA. SMARTER De-Stressed Cereal Breeding. TRENDS IN PLANT SCIENCE 2016; 21:909-925. [PMID: 27514453 DOI: 10.1016/j.tplants.2016.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 05/06/2023]
Abstract
In cereal breeding programs, improved yield potential and stability are ultimate goals when developing new varieties. To facilitate achieving these goals, reproductive success under stressful growing conditions is of the highest priority. In recent times, small RNA (sRNA)-mediated pathways have been associated with the regulation of genes involved in stress adaptation and reproduction in both model plants and several cereals. Reproductive and physiological traits such as flowering time, reproductive branching, and root architecture can be manipulated by sRNA regulatory modules. We review sRNA-mediated pathways that could be exploited to expand crop diversity with adaptive traits and, in particular, the development of high-yielding stress-tolerant cereals: SMARTER cereal breeding through 'Small RNA-Mediated Adaptation of Reproductive Targets in Epigenetic Regulation'.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
10
|
Pan L, Wang Z, Cai J, Gao H, Zhao H, Dong L. High-throughput sequencing reveals differential regulation of miRNAs in fenoxaprop-P-ethyl-resistant Beckmannia syzigachne. Sci Rep 2016; 6:28725. [PMID: 27353151 PMCID: PMC4926119 DOI: 10.1038/srep28725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 06/09/2016] [Indexed: 12/02/2022] Open
Abstract
Non-target site resistance (NTSR) to herbicides is an increasing concern for weed control. The majority of previous studies have focused on metabolic resistance mechanisms of NTSR, but no research exists on gene regulation mechanisms behind herbicide resistance, such as microRNA (miRNA). Here, we identified 3 American sloughgrass (Beckmannia syzigachne Steud.) populations containing fenoxaprop-P-ethyl-resistant plants. We then constructed small RNA libraries and subjected them to deep sequencing and bioinformatics analyses. Forty known and 36 potentially novel, predicted miRNAs were successfully identified. Of these, we identified 3 conserved, predicted candidate NTSR-determinant miRNAs and their potential corresponding target genes, as well as 4 novel potential miRNAs with high count. Target gene prediction and annotation indicated that these 7 differentially expressed miRNAs potentially play a role in regulating specific stress-responsive genes, very likely related to herbicide resistance. Expression profiles were determined with quantitative real-time PCR. The present study is a novel, large-scale characterization of weed miRNAs. The results should further our understanding of miRNA expression profiles associated with herbicide resistance, allowing for the development of more effective weed management strategies.
Collapse
Affiliation(s)
- Lang Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Zhaoyun Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Jia Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Haitao Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| |
Collapse
|
11
|
Bratzel F, Turck F. Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biol 2015; 16:192. [PMID: 26374394 PMCID: PMC4571075 DOI: 10.1186/s13059-015-0770-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plants commit to flowering based on endogenous and exogenous information that they can remember across mitotic cell divisions. Here, we review how signal perception and epigenetic memory converge at key integrator genes, and we show how variation in their regulatory circuits supports the diversity of plant lifestyles.
Collapse
Affiliation(s)
- Fabian Bratzel
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, Carl von Linne Weg 10, 50829, Cologne, Germany
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, Carl von Linne Weg 10, 50829, Cologne, Germany.
| |
Collapse
|