1
|
Permana BH, Thiravetyan P, Treesubsuntorn C. Exogenous of different elicitors: proline and ornithine on Sansevieria trifasciata under particulate matter (PM) and volatile organic compounds (VOC). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34028-34037. [PMID: 38693456 DOI: 10.1007/s11356-024-33513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOC) in situ. Plants for removing PM and VOC were associated with botanical biofilters to attract pollution to the plant. On the other hand, persistent pollution exposure can lower plant health and phytoremediation effectiveness; therefore, improving plant tolerance against stress is necessary. Various elicitors can enhance plant tolerance to certain stressors. This study aims to investigate different elicitors to maintain plant health and improve the use of plants in phytoremediation for PM and VOC pollution. This experiment used Sansevieria trifasciata hort. ex Prain under PM and VOC stress. Exogenous elicitors, such as proline, ornithine, and a commercial product, were applied to the leaf parts before exposure to PM and VOC stress. The initial concentrations of PM1, PM2.5, and PM10 were 300-350, 350-450, and 400-500 µg m-3, respectively, while the VOC concentration was 2.5-3.0 mg m-3. The plant was stressed for 7 days. The result indicated that ornithine 10 mM is vital in improving plant tolerance and inducing antioxidant enzymes against PM and VOC, while proline 50 mM and a commercial product could not reduce plant stress. This study suggests that ornithine might be an important metabolite to improve plant tolerance to PM and VOC.
Collapse
Affiliation(s)
- Bayu Hadi Permana
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
2
|
Zhao X, Yang X, Li Y, Nian H, Li K. 14-3-3 proteins regulate the HCHO stress response by interacting with AtMDH1 and AtGS1 in tobacco and Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132036. [PMID: 37453350 DOI: 10.1016/j.jhazmat.2023.132036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Formaldehyde (HCHO) is one of the most essential common carcinogenic environmental pollutants. While 14-3-3 proteins are known to regulate the response of plants to HCHO stress, the regulatory mechanisms responsible for a tolerant phenotype remain unclear. We first performed qPCR analysis of HCHO-treated Arabidopsis and tobacco and determined that the expression of At14-3-3PSI and Nt14-3-3C genes was rapidly upregulated after HCHO stress. Furthermore, overexpression of 14-3-3, AtMDH1 or AtGS1 genes enhanced plant HCHO absorption capacity and resistance, and knockdown or knockout of 14-3-3, AtMDH1 or AtGS1 genes reduced plant HCHO absorption capacity and resistance. However, overexpression of the AtGS1 and AtMDH1 genes in the At14-3-3 psi mutant restored HCHO uptake and resistance in Arabidopsis. Moreover, 14-3-3 bound to the N-terminus of AtMDH1 and the C-terminus of AtGS1, respectively, and repressed and enhanced their expression. The 13C NMR results of HCHO stress mutants Atgs1 and Atmdh1 showed that the metabolites Glu and Asp rapidly increased, indicating that AtGS1 and AtMDH1 were indeed indispensable for Arabidopsis to metabolize HCHO. In conclusion, we uncovered a HCHO stress response mechanism mediated by 14-3-3, which enhances the plant's ability to absorb HCHO, deepening our understanding of how plants respond to HCHO stress.
Collapse
Affiliation(s)
- Xing Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Xueting Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Yunfang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China.
| |
Collapse
|
3
|
New Insight into Short Time Exogenous Formaldehyde Application Mediated Changes in Chlorophytum comosum L. (Spider Plant) Cellular Metabolism. Cells 2023; 12:cells12020232. [PMID: 36672168 PMCID: PMC9857029 DOI: 10.3390/cells12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Chlorophytum comosum L. plants are known to effectively absorb air pollutants, including formaldehyde (HCHO). Since the metabolic and defense responses of C. comosum to HCHO are poorly understood, in the present study, biochemical changes in C. comosum leaves induced by 48 h exposure to exogenous HCHO, applied as 20 mg m-3, were analyzed. The observed changes showed that HCHO treatment caused no visible harmful effects on C. comosum leaves and seemed to be effectively metabolized by this plant. HCHO application caused no changes in total chlorophyll (Chl) and Chl a content, increased Chl a/b ratio, and decreased Chl b and carotenoid content. HCHO treatment affected sugar metabolism, towards the utilization of sucrose and synthesis or accumulation of glucose, and decreased activities of aspartate and alanine aminotransferases, suggesting that these enzymes do not play any pivotal role in amino acid transformations during HCHO assimilation. The total phenolic content in leaf tissues did not change in comparison to the untreated plants. The obtained results suggest that HCHO affects nitrogen and carbohydrate metabolism, effectively influencing photosynthesis, shortly after plant exposure to this volatile compound. It may be suggested that the observed changes are related to early HCHO stress symptoms or an early step of the adaptation of cells to HCHO treatment. The presented results confirm for the first time the direct influence of short time HCHO exposure on the studied parameters in the C. comosum plant leaf tissues.
Collapse
|
4
|
Li P, Liu C, Luo Y, Shi H, Li Q, PinChu C, Li X, Yang J, Fan W. Oxalate in Plants: Metabolism, Function, Regulation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16037-16049. [PMID: 36511327 DOI: 10.1021/acs.jafc.2c04787] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Characterized by strong acidity, chelating ability, and reducing ability, oxalic acid, a low molecular weight dicarboxylic organic acid, plays important roles in the regulation of plant growth and development, the response to both biotic and abiotic stresses such as plant defense and heavy metals detoxification, and food quality. The metabolism of oxalic acid has been well-studied in microorganisms, fungi, and animals but remains less understood in plants. However, excessive accumulation of oxalic acid is detrimental to plants. Therefore, the level of oxalic acid has to be precisely controlled in plant tissues. In this review, we summarize the metabolism, function, and regulation of oxalic acid in plants, and we discuss solutions such as agricultural practices and plant biotechnology to manipulate oxalic acid metabolism to regulate plant responses to both external stimuli and internal developmental cues.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlan Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yu Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huineng Shi
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Qi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Cier PinChu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuejiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Fan
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Permana BH, Thiravetyan P, Treesubsuntorn C. Effect of airflow pattern and distance on removal of particulate matters and volatile organic compounds from cigarette smoke using Sansevieria trifasciata botanical biofilter. CHEMOSPHERE 2022; 295:133919. [PMID: 35143856 DOI: 10.1016/j.chemosphere.2022.133919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Botanical biofilters can effectively remove indoor air pollution. However, to apply botanical biofilters in situ, the distance of botanical biofilter to the pollutants and airflow pattern can be important factors impacting efficiency. This study examined the removal efficiency of particulate matters (PMs) and volatile organic compounds (VOCs) from cigarette smoke, such as formaldehyde and acetone, at various distances (100 cm, 175 cm, 240 cm, and 315 cm) using a Sansevieria trifasciata botanical biofilter. The botanical biofilter was placed inside a testing room (24 m3) and exposed to cigarette smoke. The pollutants removal efficiency was evaluated for six cycles (24 h/cycle) and one cycle as a recovery period where botanical biofilter was placed under normal conditions for 30 days. Results showed that the botanical biofilter could remove 140-250 μg m-3, 147-257 μg m-3, 212-455 μg m-3 for PM1, PM2.5, and PM10, respectively, at 8 h. Total VOCs, formaldehyde, and acetone removal were 40%-65%, 46%-69%, and 31%-61% at 24 h. PMs and VOCs removal efficiency can be affected by both distance and pattern of airflow in the testing room. The highest PM1 and PM2.5 elimination appeared at 240 cm and 315 cm, while VOCs removal was high at 100 cm. Botanical biofilter creates airflow vortices around 100 cm, indicating low removal of PMs. This is the first study that demonstrated the effect of airflow patterns on different pollutants removal efficiency.
Collapse
Affiliation(s)
- Bayu Hadi Permana
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
6
|
Zuo L, Wu D, Yu L, Yuan Y. Phytoremediation of formaldehyde by the stems of Epipremnum aureum and Rohdea japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11445-11454. [PMID: 34537936 DOI: 10.1007/s11356-021-16571-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Decorative plants can efficiently purify formaldehyde and improve the quality of indoor air. The existing studies primarily revealed that the aerial and underground parts of plants' capacity to purify formaldehyde, while the performance of stems is unclear. A formaldehyde fumigation experiment was conducted on Epipremnum aureum and Rohdea japonica in a sealed chamber. Results showed the stems could remove formaldehyde. The efficiency of removal by the stems of each plant was 0.089 and 0.137 mg∙m-3∙h-1, respectively, the rate of purification was 40.0 and 61.6%, respectively. Both were related to plant species and the latter was affected by other factors like exposed area. To further explore the mechanism of phytoremediation, the correlation between the concentration of formaldehyde and CO2 during the experiment was investigated. Results showed when leaves of plants were exposed to formaldehyde, the concentration of CO2 increased with the decrease in concentration of formaldehyde, and the change in concentration of CO2 could be used as an indicator of the degree of decontamination of formaldehyde by the plants.
Collapse
Affiliation(s)
- Lijun Zuo
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dan Wu
- School of Architecture and Design, Southwest Jiaotong University, Chengdu, 611756, China
| | - Le Yu
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yanping Yuan
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Zhao X, Zeng Z, Cao W, Khan D, Ikram M, Yang K, Chen L, Li K. Co-overexpression of AtSHMT1 and AtFDH induces sugar synthesis and enhances the role of original pathways during formaldehyde metabolism in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110829. [PMID: 33691963 DOI: 10.1016/j.plantsci.2021.110829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Serine hydroxymethyltransferase 1 (SHMT1) is a key enzyme in the photorespiration pathway in higher plants. Our previous study showed that AtSHMT1 controls the assimilation of HCHO to sugars in Arabidopsis. The expression of SHMT1 was induced in Arabidopsis but was inhibited in tobacco under HCHO stress. To investigate whether the function of AtSHMT1 in the HCHO assimilation could be exerted in tobacco, AtSHMT1 was overexpressed alone (S5) or co-overexpressed (SF6) with Arabidopsis formate dehydrogenase (AtFDH) in leaves using a light-inducible promoter in this study. 13C NMR analyses showed that the 13C-metabolic flux from H13CHO was introduced to sugar synthesis in SF6 leaves but not in S5 leaves. The increase in the production of metabolites via the original pathways was particularly greater in SF6 leaves than in S5 leaves, suggesting that co-overexpression of AtSHMT1 and AtFDH is more effective than overexpression of AtSHMT1 alone in the enhancement of HCHO metabolism in tobacco leaves. Consequently, the increase in HCHO uptake and resistance was greater in SF6 leaves than in S5 leaves. The mechanism underlying the role of overexpressed AtSHMT1 and AtFDH was discussed based on changes in photosynthetic parameters, chlorophyll content, antioxidant enzyme activity and the oxidative level in leaves.
Collapse
Affiliation(s)
- Xing Zhao
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Zhidong Zeng
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Wenjia Cao
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Dawood Khan
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Muhammad Ikram
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Kangbing Yang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Limei Chen
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, 650500, Kunming, China.
| |
Collapse
|
8
|
Wang Y, Luo SH, Yan S, Li P, Liu X, Mu W, Teng F, Wang Y, Lei X. Carbothermal reduction of LiFePO4/C composite cathodes using acid-washed iron red as raw material through carboxylic acid pyrolysis reducing gas participation strategies. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Min Y, Cao W, Xiong Y, Si Z, Khan D, Chen L. Formaldehyde assimilation through coordination of the glyoxylate pathway and the tricarboxylic acid cycle in broad bean roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:65-79. [PMID: 30852239 DOI: 10.1016/j.plaphy.2019.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Formaldehyde (HCHO) assimilation in broad bean (Vicia faba L. cv. YD) roots was investigated using 13C-labeled HCHO followed by 13C-NMR analysis. Results revealed that H13CHO was first oxidized to H13COOH in the roots treated with 2 mM H13CHO in a time-dependent manner. Subsequently, a massive signal peak of [2, 4-13C]citrate (Cit) and a signal peak of [2, 3-13C]succinate (Su) were observed in accompany with an enhancement in the signal intensity of [3-13C]Cit. The data suggested that the glyoxylate pathway and the tricarboxylic acid (TCA) cycle functioned simultaneously in the subsequent assimilation of H13COOH. The yield of [2, 4-13C]Cit accounted for more than 80% of the total metabolites. The activity of isocitrate lyase (ICL), a key enzyme in the glyoxylate pathway, was stimulated by HCHO in a dosage-dependent manner. As a result, [2, 4-13C]Cit production was increased significantly in YD roots treated with high concentrations (4 and 6 mM) of H13CHO. Moreover, induction of the ICL activity by methanol resulted in a simultaneous elevation in the production of [2, 4-13C]Cit and [3-13C]Cit in methanol-pretreated roots under 2 mM H13CHO stress. Pretreatment of roots with cyclosporin A, which hinders the transport of 13C-enriched compounds into mitochondria, caused a notable decline in the signal peak and yield of [2, 4-13C]Cit and consequently induced a notable accumulation of [2, 3-13C]Su and an increase in the HCO3- production (generated from H13COOH oxidation) in H13CHO-treated roots. These results suggested that the glyoxylate pathway and the TCA cycle function coordinately in HCHO assimilation in broad bean roots.
Collapse
Affiliation(s)
- Yong Min
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong Campus, Chenggong, Kunming, 650500, China
| | - Wenjia Cao
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong Campus, Chenggong, Kunming, 650500, China
| | - Yun Xiong
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong Campus, Chenggong, Kunming, 650500, China
| | - Zhihao Si
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong Campus, Chenggong, Kunming, 650500, China
| | - Dawood Khan
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong Campus, Chenggong, Kunming, 650500, China
| | - Limei Chen
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong Campus, Chenggong, Kunming, 650500, China.
| |
Collapse
|
10
|
Liang H, Zhao S, Liu K, Su Y. Roles of reactive oxygen species and antioxidant enzymes on formaldehyde removal from air by plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 54:193-201. [PMID: 30596331 DOI: 10.1080/10934529.2018.1544477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The roles of enzymatic reactions and redox reactions caused by reactive oxygen species (ROS) in formaldehyde metabolism in tomatoes and wheat seedlings and the changes in peroxidase (POD) and catalase (CAT) activities in plants were investigated. Differences in the breakdown of added formaldehyde between fresh and boiled plant extracts were determined to calculate the contributions of different removal mechanisms. Two plant seedlings efficiently removed formaldehyde from air when its level varied from 0.65 to 1.91 mg m-3; meanwhile, the maximum rate at which tomato seedlings transported formaldehyde from air to the rhizosphere solution reached 182.26 µg h-1 kg-1 FW (fresh weight). Metabolism in plants was mainly responsible for the formaldehyde dissipation. The enzymatic contribution to formaldehyde dissipation decreased with increasing shoot exposure time or air formaldehyde level, while the redox contribution increased in importance because of an increasing level of ROS. The different enzymatic antioxidant activities of plants resulted in different levels of ROS and hence different tolerance and removal efficiencies toward formaldehyde. The self-enhancing ability of plants to remove formaldehyde via redox reactions suggested that the formaldehyde removal efficiency could be enhanced by plant adaptation to environmental stress.
Collapse
Affiliation(s)
- Hanxiao Liang
- a College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi , Xinjiang 830046 , People's Republic of China
| | - Suya Zhao
- a College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi , Xinjiang 830046 , People's Republic of China
| | - Kaiyan Liu
- a College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi , Xinjiang 830046 , People's Republic of China
| | - Yuhong Su
- a College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi , Xinjiang 830046 , People's Republic of China
| |
Collapse
|
11
|
Igamberdiev AU, Kleczkowski LA. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:318. [PMID: 29593770 PMCID: PMC5861185 DOI: 10.3389/fpls.2018.00318] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/27/2018] [Indexed: 05/03/2023]
Abstract
Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.
Collapse
Affiliation(s)
- Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Li Z, Xu Y, Zhu H, Qian Y. Imaging of formaldehyde in plants with a ratiometric fluorescent probe. Chem Sci 2017; 8:5616-5621. [PMID: 28989598 PMCID: PMC5621015 DOI: 10.1039/c7sc00373k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
The fluorescence monitoring of formaldehyde in real environmental samples and live plant tissues is of great importance for physiological and pathological studies. However, there is a lack of suitable chemical tools to directly trace and measure the formaldehyde activity in bio-systems, and developing effective and, in particular, selective sensors for mapping formaldehyde in live tissues still remains a great challenge. Here, we demonstrate for the first time that the ratiometric fluorescence monitoring of formaldehyde in live plant tissues is achieved with a newly developed ratiometric fluorescent probe, FAP, which effectively eliminated interference from other comparative analytes. Live tissue analyses reveal that FAP can potentially detect exogenous and endogenous formaldehyde in live Arabidopsis thaliana tissues, exposing a potential application for biological and pathological studies of formaldehyde.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , No. 163 Xianlin Road , Nanjing 210023 , China .
| | - Yuqing Xu
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , No. 163 Xianlin Road , Nanjing 210023 , China .
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , No. 163 Xianlin Road , Nanjing 210023 , China .
| | - Yong Qian
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , No. 163 Xianlin Road , Nanjing 210023 , China .
- College of Chemistry and Materials Science , Nanjing Normal University , No. 1 Wenyuan Road , Nanjing , 210046 , China .
| |
Collapse
|