1
|
Ma X, Ju S, Lin H, Huang H, Huang J, Peng D, Ming R, Lan S, Liu ZJ. Sex-Related Gene Network Revealed by Transcriptome Differentiation of Bisexual and Unisexual Flowers of Orchid Cymbidium tortisepalum. Int J Mol Sci 2023; 24:16627. [PMID: 38068950 PMCID: PMC10706266 DOI: 10.3390/ijms242316627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Despite extensive research on orchid reproductive strategies, the genetic studies of sex differentiation in the orchid family are still lacking. In this study, we compared three sexual phenotypes of Cymbidium tortisepalum bisexual flowers as well as female and male unisexual mutants. Through comparative transcriptomes, we analyzed the sex-biased differentially expressed genes (DEGs) and gene co-expression networks of sex organs (gynostemium and ovary) among them, identified the candidate genes of sex differentiation, and validated their expression by qRT-PCR. The C. tortisepalum unisexual mutants with degenerated phenotypes were compared to the bisexual plants with respect to both the flower organs and plant morphologies. Totally, 12,145, 10,789, and 14,447 genes were uniquely expressed in the female, male, and hermaphrodite sex organs, respectively. A total of 4291 sex-biased DEGs were detected among them, with 871, 2867, and 1937 DEGs in the comparisons of bisexual vs. female, bisexual vs. male, and male vs. female flowers, respectively. Two co-expressed network modules, with 81 and 419 genes were tightly correlated with female sexual traits, while two others with 265 and 135 genes were highly correlated with male sexual traits. Two female-biased hub genes (CtSDR3b and CtSDR3b-like) nested in the female modules, the homologs of maize sex determinant tasselseed2, may control the feminization of C. tortisepalum. At the same time, two male-biased hub genes (CtYAB2 and CtYAB5) nested in the male modules, the homologs of grape sex determinant VviYABBY3, may control the androphany of C. tortisepalum. This study discovered the molecular regulation networks and proposed a model for orchid sex differentiation, therefore providing for the first time the genetic basis for the sex separation in the orchid family.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Ju
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaxing Huang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Huang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Donghui Peng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3707, USA
| | - Siren Lan
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Qin X, Zhang W, Dong X, Tian S, Zhang P, Zhao Y, Wang Y, Yan J, Yue B. Identification of fertility-related genes for maize CMS-S via Bulked Segregant RNA-Seq. PeerJ 2020; 8:e10015. [PMID: 33062436 PMCID: PMC7532766 DOI: 10.7717/peerj.10015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023] Open
Abstract
Cytoplasmic male sterility (CMS) is extensively used in maize hybrid production, and identification of genes related to fertility restoration for CMS is important for hybrid breeding. The fertility restoration of S type CMS is governed by several loci with major and minor effects, while the mechanism of fertility restoration for CMS-S is still unknown. In this study, BSR-Seq was conducted with two backcrossing populations with the fertility restoration genes, Rf3 and Rf10, respectively. Genetic mapping via BSR-Seq verified the positions of the two loci. A total of 353 and 176 differentially expressed genes (DEGs) between the male fertility and male sterile pools were identified in the populations with Rf3 and Rf10, respectively. In total, 265 DEGs were co-expressed in the two populations, which were up-regulated in the fertile plants, and they might be related to male fertility involving in anther or pollen development. Moreover, 35 and seven DEGs were specifically up-regulated in the fertile plants of the population with Rf3 and Rf10, respectively. Function analysis of these DEGs revealed that jasmonic acid (JA) signal pathway might be involved in the Rf3 mediated fertility restoration for CMS-S, while the small ubiquitin-related modifier system could play a role in the fertility restoration of Rf10.
Collapse
Affiliation(s)
- Xiner Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xue Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shike Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Panpan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Wang
- Industrial Crops Research Institution, Heilongjiang Academy of Land Reclamation of Sciences, Haerbin, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bing Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Nie H, Cheng C, Hua J. Mitochondrial proteomic analysis reveals that proteins relate to oxidoreductase activity play a central role in pollen fertility in cotton. J Proteomics 2020; 225:103861. [PMID: 32531408 DOI: 10.1016/j.jprot.2020.103861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023]
Abstract
Cotton (Gossypium hirsutum L.) is an important economic crop. Cytoplasm male sterility (CMS) has been used to develop hybrid system and to produce hybrid seeds in cotton, but the molecular mechanism of CMS remains unclear. Mitochondria are semi-autonomous organelles, which play an important role in the reproduction of flowering plants. Male sterility has been proved associated with mitochondrial dysfunction in plants. In present study, a new strategy of proteomic sequencing data-independent acquisition (DIA) was used to analysis protein abundance across CMS lines 2074A (cytoplasm of Gossypium harknessii, D2-2) and 2074S (cytoplasm of G. hirsutum, AD1), and their maintainer 2074B. Comparing with transcriptome results showed that there is little consistence between proteome and transcriptome. A total of 2095 protein species were identified in three materials, and 186 and 161 differentially proteins were detected in the comparisons of 2074A vs 2074B, and 2074S vs 2074B, respectively. Among them, 49 and 50 proteins were specific existed in anther, and mainly participated in oxidoreductase activity, carbohydrate metabolism, fatty acid metabolism, cell aging, wax or cutin deposition and signal transduction. Gh_A07G0770 and Gh_D05G1908 were specific up-regulated in sterility lines, and the other genes Gh_D08G1196, Gh_D12G1971, Gh_A11G1250, Gh_D08G0388 were down-regulated, which presented similar expression tendency verified by qRT-PCR, transcriptome and proteome results. These six genes related to lipid synthesis, response to oxidative stress and cell aging, suggested them being involved in CMS occurrence. Using virus-induced gene silencing (VIGS) system, sterility obtained demonstrated the silencing Gh_A11G1250 in maintainer 2074B led to partial anthers abortion. Gh_A11G1250 encoded a mitochondrial localization of peroxisomal-like protein, participated in response to reactive oxygen species (ROS). Twenty-two proteins interacting with Gh_A11G1250 mainly related to chlorophyll biosynthetic process, photoperiodism and flowering, which showed different expression pattern between the male sterile line 2074A and maintainer 2074B. This novel research based on mitochondrial proteomics comparison confirmed that DAPs related to oxidative stress are critical to pollen abortion. BIOLOGICAL SIGNIFICANCE: Cytoplasm male sterility (CMS) system is utilized widely for hybrid production in cotton. However, the genetic and molecular mechanisms of CMS still need to be further elucidated. Up till now, fewer comprehensive comparisons of the mitochondrial proteomes from cotton CMS line and maintainer line have been reported. In this study, we performed a novel comparison of mitochondrial protein profiles in two CMS lines and their common maintainer line. Based on our results, we found a potential protein related to oxidative stress led to the anthers abortion. These results accumulate data to interpret the molecular mechanisms of CMS in cotton.
Collapse
Affiliation(s)
- Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology; China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing 100193, PR China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology; China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing 100193, PR China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding, Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology; China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
4
|
Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L.). PLoS One 2019; 14:e0218381. [PMID: 31233531 PMCID: PMC6590983 DOI: 10.1371/journal.pone.0218381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/01/2019] [Indexed: 11/19/2022] Open
Abstract
Male sterility (induced or natural) is a potential tool for commercial hybrid seed production in different crops. Despite numerous endeavors to understand the physiological, hereditary, and molecular cascade of events governing CMS in cotton, the exact biological process controlling sterility and fertility reconstruction remains obscure. During current study, RNA-Seq using Ion Torrent S5 platform is carried out to identify 'molecular portraits' in floral buds among the Cytoplasmic Genic Male Sterility (CGMS) line, its near-isogenic maintainer, and restorer lines. A total of 300, 438 and 455 genes were differentially expressed in CGMS, Maintainer, and Restorer lines respectively. The functional analysis using AgriGo revealed suppression in the pathways involved in biogenesis and metabolism of secondary metabolites which play an important role in pollen and anther maturation. Enrichment analysis showed dearth related to pollen and anther's development in sterile line, including anomalous expression of genes and transcription factors that have a role in the development of the reproductive organ, abnormal cytoskeleton formation, defects in cell wall formation. The current study found aberrant expression of DYT1, AMS and cytochrome P450 genes involved in tapetum formation, pollen development, pollen exine and anther cuticle formation associated to male sterility as well as fertility restoration of CGMS. In the current study, more numbers of DEGs were found on Chromosome D05 and A05 as compared to other chromosomes. Expression pattern analysis of fourteen randomly selected genes using qRT-PCR showed high concurrence with gene expression profile of RNA-Seq analysis accompanied by a strong correlation of 0.82. The present study provides an important support for future studies in identifying interaction between cyto-nuclear molecular portraits, to accelerate functional genomics and molecular breeding related to cytoplasmic male sterility studies in cotton.
Collapse
|
5
|
iTRAQ-Based Proteomics Analyses of Sterile/Fertile Anthers from a Thermo-Sensitive Cytoplasmic Male-Sterile Wheat with Aegilops kotschyi Cytoplasm. Int J Mol Sci 2018; 19:ijms19051344. [PMID: 29724073 PMCID: PMC5983606 DOI: 10.3390/ijms19051344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022] Open
Abstract
A “two-line hybrid system” was developed, previously based on thermo-sensitive cytoplasmic male sterility in Aegilops kotschyi (K-TCMS), which can be used in wheat breeding. The K-TCMS line exhibits complete male sterility and it can be used to produce hybrid wheat seeds during the normal wheat-growing season; it propagates via self-pollination at high temperatures. Isobaric tags for relative and absolute quantification-based quantitative proteome and bioinformatics analyses of the TCMS line KTM3315A were conducted under different fertility conditions to understand the mechanisms of fertility conversion in the pollen development stages. In total, 4639 proteins were identified, the differentially abundant proteins that increased/decreased in plants with differences in fertility were mainly involved with energy metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, protein synthesis, translation, folding, and degradation. Compared with the sterile condition, many of the proteins that related to energy and phenylpropanoid metabolism increased during the anther development stage. Thus, we suggest that energy and phenylpropanoid metabolism pathways are important for fertility conversion in K-TCMS wheat. These findings provide valuable insights into the proteins involved with anther and pollen development, thereby, helping to further understand the mechanism of TCMS in wheat.
Collapse
|