1
|
Liu H, Jiang J, An M, Li B, Xie Y, Xu C, Jiang L, Yan F, Wang Z, Wu Y. Bacillus velezensis SYL-3 suppresses Alternaria alternata and tobacco mosaic virus infecting Nicotiana tabacum by regulating the phyllosphere microbial community. Front Microbiol 2022; 13:840318. [PMID: 35966697 PMCID: PMC9366745 DOI: 10.3389/fmicb.2022.840318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The occurrence of plant diseases is closely associated with the imbalance of plant tissue microecological environment. The regulation of the phyllosphere microbial communities has become a new and alternative approach to the biological control of foliar diseases. In this study, Bacillus velezensis SYL-3 isolated from Luzhou exhibited an effective inhibitory effect against Alternaria alternata and tobacco mosaic virus (TMV). The analysis of phyllosphere microbiome by PacBio sequencing indicated that SYL-3 treatment significantly altered fungal and bacterial communities on the leaves of Nicotiana tabacum plants and reduced the disease index caused by A. alternata and TMV. Specifically, the abundance of P. seudomo, Sphingomonas, Massilia, and Cladosporium in the SYL-3 treatment group increased by 19.00, 9.49, 3.34, and 12.29%, respectively, while the abundances of Pantoea, Enterobacter, Sampaiozyma, and Rachicladosporium were reduced. Moreover, the abundance of beneficial bacteria, such as Pseudomonas and Sphingomonas, was negatively correlated with the disease indexes of A. alternata and TMV. The PICRUSt data also predicted the composition of functional genes, with significant differences being apparent between SYL-3 and the control treatment group. Further functional analysis of the microbiome also showed that SYL-3 may induce host disease resistance by motivating host defense-related pathways. These results collectively indicate that SYL-3 may suppress disease progression caused by A. alternata or TMV by improving the microbial community composition on tobacco leaves.
Collapse
Affiliation(s)
- He Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jun Jiang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- Sichuan Province Tobacco Company, Chengdu, China
| | - Yunbo Xie
- Sichuan Province Tobacco Company, Chengdu, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Sichuan Province Tobacco Company, Luzhou, China
| | | | - Fangfang Yan
- Sichuan Province Tobacco Company, Panzhihua, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Zhiping Wang,
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Yuanhua Wu,
| |
Collapse
|
2
|
Bernardino MC, Couto MLCO, Vaslin MFS, Barreto-Bergter E. Antiviral activity of glucosylceramides isolated from Fusarium oxysporum against Tobacco mosaic virus infection. PLoS One 2020; 15:e0242887. [PMID: 33237955 PMCID: PMC7688173 DOI: 10.1371/journal.pone.0242887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Natural elicitors derived from pathogenic microorganisms represent an ecologic strategy to achieve resistance in plants against diseases. Glucosylceramides (GlcCer) are classified as neutral glycosphingolipids. GlcCer were isolated and purified from Fusarium oxysporum mycelium. F. oxysporum is a plant pathogenic fungus, abundant in soil and causing severe losses in economically important crops such as corn, tobacco, banana, cotton and passion fruit. In this study we evaluate the capacity of GlcCer in inducing resistance in N. tabacum cv Xanthi plants against Tobacco mosaic virus (TMV). Spraying tobacco plants with GlcCer before virus infection reduced the incidence of necrotic lesions caused by TMV. In addition, plants already infected with the virus showed a reduction in hypersensitive response (HR) lesions after GlcCer treatment, suggesting an antiviral effect of GlcCer. Our investigations showed that GlcCer stimulates the early accumulation of H2O2 and superoxide radicals. In addition, the expression of PR-1 (pathogenesis-related 1, with suggested antifungal action), PR-2 (β-1,3-glucanase), PR-3 (Chitinase), PR-5 (Osmotin), PAL (Phenylalanine ammonia-lyase), LOX (Lipoxygenase) and POX (Peroxidase) genes was highly induced after treatment of tobacco plants with GlcCer and induction levels remained high throughout a period of 6 to 120 hours. Our experiments demonstrate that GlcCer induces resistance in tobacco plants against infection by TMV.
Collapse
Affiliation(s)
- Mariana C. Bernardino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michel Leon C. O. Couto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maite F. S. Vaslin
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Guo Y, Dong Y, Xu C, Xie Q, Xie Y, Xia Z, An M, Wu Y. Novel combined biological antiviral agents Cytosinpeptidemycin and Chitosan oligosaccharide induced host resistance and changed movement protein subcellular localization of tobacco mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:40-46. [PMID: 32284135 DOI: 10.1016/j.pestbp.2019.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 06/11/2023]
Abstract
Plant viral diseases cause severe economic losses in agricultural production. Development of microorganism-derived antiviral agents provides an alternative strategy to efficiently control plant viral diseases. In this study, the antiviral effect and mechanism of a combined biological agent Cytosinpeptidemycin and Chitosan oligosaccharide (CytPM-COS) were investigated. CytPM-COS effectively inhibited tobacco mosaic virus (TMV) in Nicotiana glutinosa, suppressed viral RNA and CP accumulation in BY-2 protoplast and affected the subcellular localization as well as punctate formation of TMV MP in N. benthamiana leaves. In addition, CytPM-COS triggered reactive oxygen species (ROS) production and induced up-regulation of various defense responsive genes including PR-1, PR-5, FLS2, Hsp70. Our results indicated that CytPM-COS can potentially act as a pesticide for integrated control of plant viruses in the future.
Collapse
Affiliation(s)
- Yi Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunqi Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; High-tech Park for Agriculture and Animal Husbandry, Tongliao 028000, China
| | - Chuantao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Sichuan Tobacco Company Luzhou City Company, Luzhou 646000, China
| | - Qiang Xie
- Sichuan Tobacco Company Luzhou City Company, Luzhou 646000, China
| | - Yunbo Xie
- Sichuan Province Company of China Tobacco Corporation, Chengdu 610041, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
An M, Zhou T, Guo Y, Zhao X, Wu Y. Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin. Viruses 2019; 11:E815. [PMID: 31484426 PMCID: PMC6784071 DOI: 10.3390/v11090815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022] Open
Abstract
Ningnanmycin (NNM) belongs to microbial pesticides that display comprehensive antiviral activity against plant viruses. NNM treatment has been shown to efficiently delay or suppress the disease symptoms caused by tobacco mosaic virus (TMV) infection in local-inoculated or systemic-uninoculated tobacco leaves, respectively. However, the underlying molecular mechanism of NNM-mediated antiviral activity remains to be further elucidated. In this study, 414 differentially expressed genes (DEGs), including 383 which were up-regulated and 31 down-regulated, caused by NNM treatment in TMV-infected BY-2 protoplasts, were discovered by RNA-seq. In addition, KEGG analysis indicated significant enrichment of DEGs in the plant-pathogen interaction and MAPK signaling pathway. The up-regulated expression of crucial DEGs, including defense-responsive genes, such as the receptor-like kinase FLS2, RLK1, and the mitogen-activated protein kinase kinase kinase MAPKKK, calcium signaling genes, such as the calcium-binding protein CML19, as well as phytohormone responsive genes, such as the WRKY transcription factors WRKY40 and WRKY70, were confirmed by RT-qPCR. These findings provided valuable insights into the antiviral mechanisms of NNM, which indicated that the agent induces tobacco systemic resistance against TMV via activating multiple plant defense signaling pathways.
Collapse
Affiliation(s)
- Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yi Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
5
|
An M, Zhao X, Zhou T, Wang G, Xia Z, Wu Y. A Novel Biological Agent Cytosinpeptidemycin Inhibited the Pathogenesis of Tobacco Mosaic Virus by Inducing Host Resistance and Stress Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7738-7747. [PMID: 31199650 DOI: 10.1021/acs.jafc.9b02662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cytosinpeptidemycin (CytPM) is a microbial pesticide that displayed broad-spectrum antiviral activity against various plant viruses. However, the molecular mechanism underlying antiviral activity of CytPM is poorly understood. In this study, the results demonstrated that CytPM could effectively delay the systemic infection of tobacco mosaic virus (TMV) in Nicotiana benthamiana and significantly inhibit the viral accumulation in tobacco BY-2 protoplasts. Results of RNA-seq indicated that 210 and 120 differential expressed genes (DEGs) were significantly up- and down-regulated after CytPM treatment in BY-2 protoplasts, respectively. In addition, KEGG analysis indicated that various DEGs were involved in endoplasmic reticulum (ER) protein processing, suggesting a possible correlation between ER homeostasis and virus resistance. RT-qPCR was performed to validate the gene expression of crucial DEGs related with defense, stress responses, signaling transduction, and phytohormone, which were consistent with results of RNA-seq. Our works provided valuable insights into the antiviral mechanism of CytPM that induced host resistance to viral infection.
Collapse
Affiliation(s)
- Mengnan An
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Xiuxiang Zhao
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Tao Zhou
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Guanzhong Wang
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Zihao Xia
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Yuanhua Wu
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| |
Collapse
|