1
|
Oguchi R, Nagano S, Pfleger A, Ozaki H, Hikosaka K, Osmond B, Chow WS. An Intraspecific Negative Correlation Between the Repair Capacity of Photoinhibition of Cold Acclimated Plants and the Habitat Temperature. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39592138 DOI: 10.1111/pce.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Both the activity of photosynthesis and the repair of damaged photosystems decline in cold environments, which may increase the extent of the damage of photosynthetic machinery by light, namely photoinhibition. We hypothesized that plants in colder habitats may possess greater tolerance to photoinhibition, especially in low-temperature conditions. We measured the rate of photoinhibition, rate of photoinhibition repair and other thylakoid activities in cold environments using 298 Arabidopsis thaliana ecotypes and studied the relationships among the indicators of photoinhibition tolerance and climatic data of the habitat of each ecotype. The plants acclimated to cold conditions (12°C) for 3 days showed a negative correlation between the rate of photoinhibition repair at 5°C and the mean annual temperature of habitats, although we could not see this correlation with the control plants grown at 22°C. This result would indicate that the acclimation capacity of photoinhibition tolerance in cold conditions can affect the distribution of plants, especially in colder regions.
Collapse
Affiliation(s)
- Riichi Oguchi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Osaka, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Ana Pfleger
- Department of Botany, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Hiroshi Ozaki
- Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Barry Osmond
- Division of Plant Science, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, Australia
| | - Wah Soon Chow
- Division of Plant Science, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Meichssner R, Wilkens M, Pescheck F, Bilger W. The role of the epidermal physode layer in UV protection of Fucus species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
3
|
Nichelmann L, Pescheck F. Solar UV-B effects on composition and UV screening efficiency of foliar phenolics in Arabidopsis thaliana are augmented by temperature. PHYSIOLOGIA PLANTARUM 2021; 173:762-774. [PMID: 34510467 DOI: 10.1111/ppl.13554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 05/24/2023]
Abstract
The accumulation of foliar phenolics constitutes one strategy of plants against the potentially harmful effects of ultraviolet-B and A (UV-B, UV-A) radiation. These compounds protect photosensitive tissues by shielding and antioxidative function. It is unknown, however, whether seasonal acclimation to natural conditions may modify the UV-B effect on phenylpropanoid composition and localisation, and thus their screening efficiency. To address this debate, a field experiment with the wildtype of Arabidopsis thaliana accession Landsberg erecta (Ler) was implemented over a whole year with plants exposed to different UV-filter treatments. While seasonal increases of UV-B radiation had a slight negative effect on the amount of hydroxycinnamic acids (HCAs), low temperatures increased foliar HCAs. HCAs, however, did not contribute substantially to seasonal changes of in vivo UV absorbance. Kaempferol and quercetin derivatives increased significantly under ambient UV-B radiation, and low temperature interacted with this effect. A shift of epidermal UV-A shielding from kaempferol to quercetin derivatives was elucidated in UV-B presence. Despite this, a substantial 20-fold increase of quercetin derivatives, during periods with high irradiance and low temperature, did not affect UV absorbance leading to the conclusion that quercetin accumulation was not exclusively in epidermal vacuoles. Using confocal microscopy, the potential occurrence of quercetin in mesophyll cells was demonstrated in plants grown with experimental UV-B radiation at low temperature for the first time in A. thaliana. The presented study discusses the idea that cross-talk of UV-B radiation and temperature might adjust the physiological function of quercetin from an (epidermal) screening to an antioxidant substance.
Collapse
Affiliation(s)
- Lars Nichelmann
- Botanical Institute and Botanical Garden, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Frauke Pescheck
- Botanical Institute and Botanical Garden, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
4
|
Wang D, Sun Y, Tu M, Zhang P, Wang X, Wang T, Li J. Response of Zebrina pendula leaves to enhanced UV-B radiation. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:851-859. [PMID: 33934745 DOI: 10.1071/fp20274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Plants inevitably receive harmful UV-B radiation when exposed to solar energy, so they have developed a variety of strategies to protect against UV-B radiation damage during long-term evolution. In this study, Zebrina pendulaSchnizl. was used to investigate the plant defence against UV-B radiation because of its strong adaptability to sunlight changes, and the colour of its leaves changes significantly under different sunlight intensities. The experiment was carried out to study the changes of Z. pendula leaves under three light conditions: artificial daylight (control check); shading 50%; and artificial daylight + UV-B, aiming to explore the mechanism of defence against UV-B radiation by observing changes in leaf morphological structure, anthocyanin content and distribution. Results showed that the single leaf area increased but leaves became thinner, and the anthocyanin content in the epidermal cells decreased under 50% shading. In contrast, under daylight + UV-B, the single leaf area decreased but thickness increased (mainly due to the increase of the thickness of the upper epidermis and the palisade tissue), the trichomes increased. In addition, the anthocyanin content in the epidermal cells and phenylalanine ammonia-lyase (PAL) activity increased, and the leaf colour became redder, also, the photosynthetic pigment content in mesophyll cells and the biomass per unit volume increased significantly under daylight + UV-B. Thus, when UV-B radiation was enhanced, Z. pendula leaves reduced the exposure to UV-B radiation by reducing the area, and reflect some UV-B radiation by growing trichomes. The UV-B transmittance was effectively reduced by increasing the single leaf thickness and anthocyanin content to block or absorb partial UV-B. Through the above comprehensive defence strategies, Z. pendula effectively avoided the damage of UV-B radiation to mesophyll tissue.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuchu Sun
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mei Tu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Peipei Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoqiong Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Taixia Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; and Engineering Technology Research Center of Nursing and Utilisation of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, Henan 453007, China; and Corresponding author.
| | - Jingyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; and Engineering Technology Research Center of Nursing and Utilisation of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, Henan 453007, China; and Corresponding author.
| |
Collapse
|
5
|
Fernández-Marín B, Sáenz-Ceniceros A, Solanki T, Robson TM, García-Plazaola JI. Alpine forbs rely on different photoprotective strategies during spring snowmelt. PHYSIOLOGIA PLANTARUM 2021; 172:1506-1517. [PMID: 33483975 DOI: 10.1111/ppl.13342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Snowmelt in alpine ecosystems brings ample water, and together with above-freezing temperatures, initiates plant growth. In this scenario, rapid activation of photosynthesis is essential for a successful life-history strategy. But, strong solar radiation in late spring enhances the risk of photodamage, particularly before photosynthesis is fully functional. We compared the photoprotective strategy of five alpine forbs: one geophyte not particularly specialised in subnival life (Crocus albiflorus) and four wintergreens differing in their degree of adaptation to subnival life, from least to most specialised: Gentiana acaulis, Geum montanum, Homogyne alpina and Soldanella alpina. We used distance to the edge of snow patches as a proxy to study time-dependent changes after melting. We postulated that the photoprotective response of snowbed specialists would be stronger than of more-generalist alpine meadow species. Fv /Fm was relatively low across wintergreens and even lower in the geophyte C. albiflorus. This species also had the largest xanthophyll-cycle pool and lowest tocopherol and flavonoid glycoside contents. After snow melting, all the species progressively activated ETR, but particularly the intermediate snowbed species G. acaulis and G. montanum. The photoprotective responses after snowmelt were idiosyncratic: G. montanum rapidly accumulated xanthophyll-cycle pigments, tocopherol and flavonoid glycosides; while S. alpina showed the largest increase in plastochromanol-8 and chlorophyll contents and the greatest changes in optical properties. Climate warming scenarios might shift the snowmelt date and consequently alter the effectiveness of photoprotection mechanisms, potentially changing the fitness outcome of the different strategies adopted by alpine forbs.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, Spain
| | - Ana Sáenz-Ceniceros
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Twinkle Solanki
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Thomas Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
6
|
Plant invasion into high elevations implies adaptation to high UV-B environments: a multi-species experiment. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02173-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Pre-Harvest UV-B Radiation and Photosynthetic Photon Flux Density Interactively Affect Plant Photosynthesis, Growth, and Secondary Metabolites Accumulation in Basil (Ocimum Basilicum) Plants. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9080434] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phenolic compounds in basil (Ocimum basilicum) plants grown under a controlled environment are reduced due to the absence of ultraviolet (UV) radiation and low photosynthetic photon flux density (PPFD). To characterize the optimal UV-B radiation dose and PPFD for enhancing the synthesis of phenolic compounds in basil plants without yield reduction, green and purple basil plants grown at two PPFDs, 160 and 224 μmol·m−2·s−1, were treated with five UV-B radiation doses including control, 1 h·d−1 for 2 days, 2 h·d−1 for 2 days, 1 h·d−1 for 5 days, and 2 h·d−1 for 5 days. Supplemental UV-B radiation suppressed plant growth and resulted in reduced plant yield, while high PPFD increased plant yield. Shoot fresh weight in green and purple basil plants was 12%–51% and 6%–44% lower, respectively, after UV-B treatments compared to control. Concentrations of anthocyanin, phenolics, and flavonoids in green basil leaves increased under all UV-B treatments by 9%–18%, 28%–126%, and 80%–169%, respectively, and the increase was greater under low PPFD compared to high PPFD. In purple basil plants, concentrations of phenolics and flavonoids increased after 2 h·d−1 UV-B treatments. Among all treatments, 1 h·d−1 for 2 days UV-B radiation under PPFD of 224 μmol·m−2·s−1 was the optimal condition for green basil production under a controlled environment.
Collapse
|
8
|
Jansen MAK, Bilger W, Hideg É, Strid Å, Urban O. Editorial: Interactive effects of UV-B radiation in a complex environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:1-8. [PMID: 30385007 DOI: 10.1016/j.plaphy.2018.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Marcel A K Jansen
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland; Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
| | - Wolfgang Bilger
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Éva Hideg
- Institute of Biology, University of Pécs, Ifjusag u. 6, H-7624, Pécs, Hungary
| | - Åke Strid
- School of Science & Technology, Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden
| | - Otmar Urban
- Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic.
| |
Collapse
|