1
|
Ahmad D, Ying Y, Bao J. Understanding starch biosynthesis in potatoes for metabolic engineering to improve starch quality: A detailed review. Carbohydr Polym 2024; 346:122592. [PMID: 39245484 DOI: 10.1016/j.carbpol.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.
Collapse
Affiliation(s)
- Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
2
|
Chen L, Li Y, Zhu J, Li Z, Wang W, Qi Z, Li D, Yao P, Bi Z, Sun C, Liu Y, Liu Z. Comprehensive Characterization of the C3HC4 RING Finger Gene Family in Potato ( Solanum tuberosum L.): Insights into Their Involvement in Anthocyanin Biosynthesis. Int J Mol Sci 2024; 25:2082. [PMID: 38396758 PMCID: PMC10889778 DOI: 10.3390/ijms25042082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jinyong Zhu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Weilu Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zheying Qi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Dechen Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhen Liu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| |
Collapse
|
3
|
Albornoz K, Zhou J, Yu J, Beckles DM. Dissecting postharvest chilling injury through biotechnology. Curr Opin Biotechnol 2022; 78:102790. [PMID: 36116331 DOI: 10.1016/j.copbio.2022.102790] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
Paradoxically, refrigerating many fruits and vegetables destroys their quality, and may even accelerate their spoilage. This phenomenon, known as postharvest chilling injury (PCI), affects produce from tropical and subtropical regions and leads to economic and postharvest loss and waste. Low temperatures are used to pause the physiological processes associated with senescence, but upon rewarming, these processes may resume at an accelerated rate. Chilling-injured produce may be discarded for not meeting consumer expectations or may prematurely deteriorate. In this review, we describe progress made in identifying the cellular and molecular processes underlying PCI, and point to advances in biotechnological approaches for ameliorating symptoms. Further, we identify the gaps in knowledge that must be bridged to develop effective solutions to PCI.
Collapse
Affiliation(s)
- Karin Albornoz
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile
| | - Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jingwei Yu
- SUSTech-PKU Joint Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Kulakova A, Efremov G, Shchennikova A, Kochieva E. Dependence of the content of starch and reducing sugars on the level of expression of the genes of β-amylases StBAM1 and StBAM9 and the amylase inhibitor StAI during long-term low-temperature storage of potato tubers. Vavilovskii Zhurnal Genet Selektsii 2022; 26:507-514. [PMID: 36313822 PMCID: PMC9556308 DOI: 10.18699/vjgb-22-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022] Open
Abstract
Solanum tuberosum L. is the most important non-grain starch crop with a potential yield of 38-48 t/ha and a starch content of 13.2-18.7 %. Potato tubers are stored at a low temperature (2-4 °C) in a state of physiological dormancy. A disadvantage of this type of storage is the degradation of starch and the accumulation of reducing sugars (cold-induced sweetening), including due to an increase in the activity of β-amylases that hydrolyze starch to maltose. In this study, a comparative analysis of the β-amylase (StBAM1, StBAM9) and amylase inhibitor (StAI ) gene expression, as well as starch and reducing sugar content in tubers during long-term low-temperature storage (September, February, April) was performed using potato cultivars Nadezhda, Barin, Krasavchik, Severnoe siyanie and Utro. The β-amylase genes, StBAM9 and one of the two StBAM1 homologs (with the highest degree of homology with AtBAM1), were selected based on phylogenetic analysis data. Evaluation of the expression of these genes and the amylase inhibitor gene showed a tendency to decrease in transcription for all analyzed cultivars. The starch content also significantly decreased during tuber storage. The amount of reducing sugars increased in the September-April period, while in February-April, their content did not change (Krasavchik), decreased (Barin, Severnoe siyanie) or continued to grow (Utro, Nadezhda). It can be assumed that the gene activity of StBAM1 and StBAM9 correlates with the amount of starch (positively) and monosaccharides (negatively). The level of StAI expression, in turn, may be directly dependent on the level of StBAM1 expression. At the same time, there is no relationship between the degree of cultivar predisposition to cold-induced sweetening and the expression profile of the StBAM1, StBAM9, and StAI genes.
Collapse
Affiliation(s)
- A.V. Kulakova
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - G.I. Efremov
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - A.V. Shchennikova
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - E.Z. Kochieva
- Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
MENDONÇA NETO ABD, GUIMARÃES MEDS, PEREIRA AM, CRUZ RRP, GONÇALVES DN, SOARES LG, FREIRE AI, FINGER FL, CECON PR. Importance of 1,4-dimethylnaphthalene in maintaining the quality of stored tubers of Asterix and Challenger cultivars. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.10521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Hou J, Liu T, Reid S, Zhang H, Peng X, Sun K, Du J, Sonnewald U, Song B. Silencing of α-amylase StAmy23 in potato tuber leads to delayed sprouting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:411-418. [PMID: 30981157 DOI: 10.1016/j.plaphy.2019.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Potato tuber dormancy is critical for the postharvest quality. The supply of carbohydrates is considered as one of the important factors controlling the rate of potato tuber sprouting. Starch is the major carbohydrate reserve in potato tuber, but very little is known about the specific starch degrading enzymes responsible for controlling tuber dormancy and sprouting. In this study, we demonstrate that an α-amylase gene StAmy23 is involved in starch breakdown and regulation of tuber dormancy. Silencing of StAmy23 delayed tuber sprouting by one to two weeks compared with the control. This phenotype is accompanied by reduced levels of reducing sugars and elevated levels of malto-oligosaccharides in tuber cortex and pith tissue below the bud eye of StAmy23-deficient potato tubers. Changes in soluble sugars is accompanied by a slight variation of phytoglycogen structure and starch granule size. Our results suggest that StAmy23 may stimulate sprouting by hydrolyzing soluble phytoglycogen to ensure supply of sugars during tuber dormancy.
Collapse
Affiliation(s)
- Juan Hou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058, Erlangen, Germany
| | - Huiling Zhang
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; College of Forestry, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Xiaojun Peng
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kaile Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Juan Du
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Uwe Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058, Erlangen, Germany.
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|