1
|
Cai D, Dong Y, Wang L, Zhao S. Integrated metabolomics and transcriptomics analysis provides insights into biosynthesis and accumulation of flavonoids and glucosinolates in different radish varieties. Curr Res Food Sci 2024; 10:100938. [PMID: 39717680 PMCID: PMC11665663 DOI: 10.1016/j.crfs.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Radish is an important vegetable worldwide, with wide medicinal functions and health benefits. The quality of radish, strongly affected by phytochemicals like flavonoids and glucosinolates, are quite different depending on the radish varieties. However, the comprehensive accumulation profiles of secondary metabolites and their molecular regulatory mechanisms in different radish cultivars remain unclear thus far. Herein, we comprehensively analyzed the secondary metabolite and gene expression profiles of the flesh and skin of four popular radish varieties with different flesh and/or skin colors, using UPLC-MS/MS-based metabolomics and transcriptomics approach combined with RT-qPCR. The results showed that altogether 352 secondary metabolites were identified in radish, of which flavonoids and phenolic acids accounted for 60.51% of the total. The flesh and skin of each variety exhibited distinct metabolic profiles, making them unique in coloration, flavor, taste, and nutritional quality. The differential metabolites were mostly enriched in flavonoid biosynthesis, flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, and glucosinolate biosynthesis pathway. Further, 19 key genes regulating the differential accumulation of flavonoids among different radish varieties were identified, such as RsCHS, RsCCOAMT, RsF3H, RsFLS, RsCYP75B1, RsDFR, and RsANS that were significantly upregulated in red-colored radish tissue. Also, 10 key genes affecting the differential accumulation of glucosinolates among different varieties were identified, such as RsCYP83B1, RsSUR1, and RsST5a that were significantly increased in the skin of green radish. Moreover, systematical biosynthetic pathways of flavonoids and glucosinolates and co-expression networks between genes and metabolites were constructed based on integrative analysis between metabolomics and transcriptomics. Our findings provide a novel insight into the mechanisms of radish quality formation, thereby providing a molecular basis for breeding and cultivation of radish with excellent nutritional quality.
Collapse
Affiliation(s)
- Da Cai
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanjie Dong
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shancang Zhao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| |
Collapse
|
2
|
Ying J, Hu J, M'mbone Muleke E, Shen F, Wen S, Ye Y, Cai Y, Qian R. RsOBP2a, a member of OBF BINDING PROTEIN transcription factors, inhibits two chlorophyll degradation genes in green radish. Int J Biol Macromol 2024; 277:134139. [PMID: 39059533 DOI: 10.1016/j.ijbiomac.2024.134139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The green radish (Raphanus sativus L.) contains abundant chlorophyll (Chl). DOF-type transcription factor OBF BINDING PROTEIN (OBP) plays crucial functions in plant growth, development, maturation and responses to various abiotic stresses. However, the metabolism by which OBP transcription factors regulate light-induced Chl metabolism in green radish is not well understood. In this study, six OBP genes were identified from the radish genome, distributed unevenly across five chromosomes. Among these genes, RsOBP2a showed significantly higher expression in the green flesh compared to the white flesh of green radish. Analysis of promoter elements suggested that RsOBPs might be involved in stress responses, particularly in light-related processes. Overexpression of RsOBP2a led to increase Chl levels in cotyledons and adventitious roots of radish, while silencing RsOBP2a expression through TYMV-induced gene silencing accelerated leaf senescence. Further investigations revealed that RsOBP2a was localized in the nucleus and served as a transcriptional repressor. RsOBP2a was induced by light and directly suppressed the expression of STAYGREEN (SGR) and RED CHLOROPHYLL CATABOLITE REDUCTASE (RCCR), thereby delaying senescence in radish. Overall, a novel regulatory model involving RsOBP2a, RsSGR, and RsRCCR was proposed to govern Chl metabolism in response to light, offering insights for the enhancement of green radish germplasm.
Collapse
Affiliation(s)
- Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Jinbin Hu
- Ningbo Weimeng Seed Industry Co., Ltd., Ningbo 315100, Zhejiang, China
| | - Everlyne M'mbone Muleke
- Department of Agriculture and Land Use Management, Masinde Muliro University of Science and Technology, Kenya
| | - Feng Shen
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, Jiangsu, China
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, Zhejiang, China.
| |
Collapse
|
3
|
Lu Z, He J, Fu J, Huang Y, Wang X. WRKY75 regulates anthocyanin accumulation in juvenile citrus tissues. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:52. [PMID: 39130615 PMCID: PMC11315850 DOI: 10.1007/s11032-024-01490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The anthocyanin accumulation in juvenile tissues can enhance the ornamental value, attract pollinators, and help improve abiotic stress. Although transcriptional regulation studies of anthocyanin have been relatively extensive, there are few reports on the mechanism of anthocyanin accumulation in young tissues. This study reveals that many juvenile citrus tissues (flowers, leaves, and pericarp) undergo transient accumulation of anthocyanins, exhibiting a red coloration. Using weighted gene co-expression network analysis (WGCNA) identified CitWRKY75 as a candidate gene. After detecting the expression levels of CitWRKY75 in various citrus juvenile tissues, the expression trend of CitWRKY75 was highly consistent with the red exhibiting and fading. Overexpression of CitWRKY75 in tobacco significantly increased the anthocyanin content. LUC and yeast one-hybrid assay demonstrated that CitWRKY75 could bind to the promoter of CitRuby1(encoding the key transcription factor promoting anthocyanin accumulation) and promote its expression. Finally, comparing the expression levels of CitWRKY75 and CitRuby1 in the late development stage of blood orange found that CitWRKY75 was not the main regulatory factor for anthocyanin accumulation in the later stage. This study used reverse genetics to identify a transcription factor, CitWRKY75, upstream of CitRuby1, which promotes anthocyanin accumulation in citrus juvenile tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01490-9.
Collapse
Affiliation(s)
- Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Jialing Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Yuping Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
4
|
Kim J, Jang H, Huh SM, Cho A, Yim B, Jeong SH, Kim H, Yu HJ, Mun JH. Effect of structural variation in the promoter region of RsMYB1.1 on the skin color of radish taproot. FRONTIERS IN PLANT SCIENCE 2024; 14:1327009. [PMID: 38264015 PMCID: PMC10804855 DOI: 10.3389/fpls.2023.1327009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Accumulation of anthocyanins in the taproot of radish is an agronomic trait beneficial for human health. Several genetic loci are related to a red skin or flesh color of radish, however, the functional divergence of candidate genes between non-red and red radishes has not been investigated. Here, we report that a novel genetic locus on the R2 chromosome, where RsMYB1.1 is located, is associated with the red color of the skin of radish taproot. A genome-wide association study (GWAS) of 66 non-red-skinned (nR) and 34 red-skinned (R) radish accessions identified three nonsynonymous single nucleotide polymorphisms (SNPs) in the third exon of RsMYB1.1. Although the genotypes of SNP loci differed between the nR and R radishes, no functional difference in the RsMYB1.1 proteins of nR and R radishes in their physical interaction with RsTT8 was detected by yeast-two hybrid assay or in anthocyanin accumulation in tobacco and radish leaves coexpressing RsMYB1.1 and RsTT8. By contrast, insertion- or deletion-based GWAS revealed that one large AT-rich low-complexity sequence of 1.3-2 kb was inserted in the promoter region of RsMYB1.1 in the nR radishes (RsMYB1.1nR), whereas the R radishes had no such insertion; this represents a presence/absence variation (PAV). This insertion sequence (RsIS) was radish specific and distributed among the nine chromosomes of Raphanus genomes. Despite the extremely low transcription level of RsMYB1.1nR in the nR radishes, the inactive RsMYB1.1nR promoter could be functionally restored by deletion of the RsIS. The results of a transient expression assay using radish root sections suggested that the RsIS negatively regulates the expression of RsMYB1.1nR, resulting in the downregulation of anthocyanin biosynthesis genes, including RsCHS, RsDFR, and RsANS, in the nR radishes. This work provides the first evidence of the involvement of PAV in an agronomic trait of radish.
Collapse
Affiliation(s)
- Jiin Kim
- Department of Life Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hoyeol Jang
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Sun Mi Huh
- Department of Life Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Ara Cho
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Bomi Yim
- Department of Life Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seung-Hoon Jeong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Haneul Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Hee-Ju Yu
- Department of Life Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, Republic of Korea
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
5
|
Liu T, Cui Q, Ban Q, Zhou L, Yuan Y, Zhang A, Wang Q, Wang C. Identification and expression analysis of the SWEET genes in radish reveal their potential functions in reproductive organ development. Mol Biol Rep 2023; 50:7535-7546. [PMID: 37501046 DOI: 10.1007/s11033-023-08701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Sugars produced by photosynthesis provide energy for biological activities and the skeletons for macromolecules; they also perform multiple physiological functions in plants. Sugar transport across plasma membranes mediated by the Sugar Will Eventually be Exported Transporter (SWEET) genes substantially affects these processes. However, the evolutionary dynamics and function of the SWEET genes are largely unknown in radish, an important Brassicaceae species. METHODS AND RESULTS Genome-wide identification and analysis of the RsSWEET genes from the recently updated radish reference genome was conducted using bioinformatics methods. The tissue-specific expression was analyzed using public RNA-seq data, and the expression levels in the bud, stamens, pistils, pericarps and seeds at 15 and 30 days after flowering (DAF) were determined by RT‒qPCR. Thirty-seven RsSWEET genes were identified and named according to their Arabidopsis homologous. They are unevenly distributed across the nine radish chromosomes and were further divided into four clades by phylogenetic analysis. There are 5-7 transmembrane domains and at least one MtN3_slv domain in the RsSWEETs. RNA-seq and RT‒qPCR revealed that the RsSWEETs exhibit higher expression levels in the reproductive organs, indicating that these genes might play vital roles in reproductive organ development. RsSWEET15.1 was found to be especially expressed in siliques according to the RNA-seq data, and the RT‒qPCR results further confirmed that it was most highly expressed levels in the seeds at 30 DAF, followed by the pericarp at 15 DAF, indicating that it is involved in seed growth and development. CONCLUSIONS This study suggests that the RsSWEET genes play vital roles in reproductive organ development and provides a theoretical basis for the future functional analysis of RsSWEETs in radish.
Collapse
Affiliation(s)
- Tongjin Liu
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China.
| | - Qunxiang Cui
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Qiuyan Ban
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Lu Zhou
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Yinghui Yuan
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Aihui Zhang
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Qian Wang
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Changyi Wang
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China.
| |
Collapse
|
6
|
Kim DH, Lim SH, Lee JY. Expression of RsPORB Is Associated with Radish Root Color. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112214. [PMID: 37299194 DOI: 10.3390/plants12112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Radish (Raphanus sativus) plants exhibit varied root colors due to the accumulation of chlorophylls and anthocyanins compounds that are beneficial for both human health and visual quality. The mechanisms of chlorophyll biosynthesis have been extensively studied in foliar tissues but remain largely unknown in other tissues. In this study, we examined the role of NADPH:protochlorophyllide oxidoreductases (PORs), which are key enzymes in chlorophyll biosynthesis, in radish roots. The transcript level of RsPORB was abundantly expressed in green roots and positively correlated with chlorophyll content in radish roots. Sequences of the RsPORB coding region were identical between white (948) and green (847) radish breeding lines. Additionally, virus-induced gene silencing assay with RsPORB exhibited reduced chlorophyll contents, verifying that RsPORB is a functional enzyme for chlorophyll biosynthesis. Sequence comparison of RsPORB promoters from white and green radishes showed several insertions and deletions (InDels) and single-nucleotide polymorphisms. Promoter activation assays using radish root protoplasts verified that InDels of the RsPORB promoter contribute to its expression level. These results suggested that RsPORB is one of the key genes underlying chlorophyll biosynthesis and green coloration in non-foliar tissues, such as roots.
Collapse
Affiliation(s)
- Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
7
|
Tan H, Luo X, Lu J, Wu L, Li Y, Jin Y, Peng X, Xu X, Li J, Zhang W. The long noncoding RNA LINC15957 regulates anthocyanin accumulation in radish. FRONTIERS IN PLANT SCIENCE 2023; 14:1139143. [PMID: 36923129 PMCID: PMC10009236 DOI: 10.3389/fpls.2023.1139143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Radish (Raphanus sativus L.) is an important root vegetable crop belonging to the Brassicaceae family. Anthocyanin rich radish varieties are popular among consumers because of their bright color and high nutritional value. However, the underlying molecular mechanism responsible for skin and flesh induce anthocyanin biosynthesis in transient overexpression, gene silencing and transcriptome sequencing were used to verify its function in radish anthocyanin accumulation, radish remains unclear. Here, we identified a long noncoding RNA LINC15957, overexpression of LINC15957 was significantly increased anthocyanin accumulation in radish leaves, and the expression levels of structural genes related to anthocyanin biosynthesis were also significantly increased. Anthocyanin accumulation and expression levels of anthocyanin biosynthesis genes were significantly reduced in silenced LINC15957 flesh when compared with control. By the transcriptome sequencing of the overexpressed LINC15957 plants and the control, 5,772 differentially expressed genes were identified. A total of 3,849 differentially expressed transcription factors were identified, of which MYB, bHLH, WD40, bZIP, ERF, WRKY and MATE were detected and differentially expressed in the overexpressed LINC15957 plants. KEGG enrichment analysis revealed the genes were significant enriched in tyrosine, L-Phenylalanine, tryptophan, phenylpropanol, and flavonoid biosynthesis. RT-qPCR analysis showed that 8 differentially expressed genes (DEGs) were differentially expressed in LINC15957-overexpressed plants. These results suggested that LINC15957 involved in regulate anthocyanin accumulation and provide abundant data to investigate the genes regulate anthocyanin biosynthesis in radish.
Collapse
Affiliation(s)
- Huping Tan
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Province Academy of Agricultural Sciences, Guiyang, China
| | - Jinbiao Lu
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Linjun Wu
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Yadong Li
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Yueyue Jin
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Xiao Peng
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Xiuhong Xu
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Jingwei Li
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| | - Wanping Zhang
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Liu T, Liu T, Zhang X, Song J, Qiu Y, Yang W, Jia H, Wang H, Li X. Combined widely targeted metabolomics and transcriptomics analysis reveals differentially accumulated metabolites and the underlying molecular bases in fleshy taproots of distinct radish genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:351-361. [PMID: 36681065 DOI: 10.1016/j.plaphy.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Radish is an important taproot crop with medicinal and edible uses that is cultivated worldwide. However, the differences in metabolites and the underlying molecular bases among different radish types remain largely unknown. In the present study, a combined analysis of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and RNA-Seq data was conducted to uncover important differentially accumulated metabolites (DAMs) among radish accessions with green, white and red taproot flesh colours. A total of 657 metabolites were identified and 138 DAMs were commonly present in red vs. green and red vs. white accessions. Red accessions were rich in phenolic compounds, while green and white accessions had more amino acids. Additionally, 41 metabolites and 98 genes encoding 37 enzymes were enriched in the shikimate and phenolic biosynthesis pathways. CHS is the rate-limiting enzyme determining flavonoid differences among accessions. A total of 119 candidate genes might contribute to red accession-specific accumulated metabolites. Specifically, one gene cluster consisting of 16 genes, including one RsMYB1, RsMYBL2, RsTT8, RsDFR, RsANS, Rs4CL3, RsSCPL10, Rs3AT1 and RsSAP2 gene, two RsTT19 and RsWRKY44 genes and three RsUGT genes, might be involved in anthocyanin accumulation in red radish fleshy taproots. More importantly, an InDel marker was developed based on an RsMYB1 promoter mutation, and the accuracy reached 95.9% when it was used to select red-fleshed radishes. This study provides comprehensive insights into the metabolite differences and underlying molecular mechanisms in fleshy taproots among different radish genotypes and will be beneficial for the genetic improvement of radish nutritional quality.
Collapse
Affiliation(s)
- Tongjin Liu
- College of Horticulture, Jinling Institute of Technology, Nanjing, Jiangsu, 210038, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tingting Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaohui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jiangping Song
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yang Qiu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Wenlong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Huixia Jia
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Haiping Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xixiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Zhang H, Du X, Yu J, Jin H, Liu N. Comparative Metabolomics study of flavonoids in the pericarp of different coloured bitter gourds ( Momordica charantia L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1347-1357. [PMID: 36051232 PMCID: PMC9424440 DOI: 10.1007/s12298-022-01210-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Bitter gourd (Momordica charantia L.) is a member of Cucurbitaceae family and has long been used as a source of food and medicine for its rich bioactive components or secondary metabolites. However, there are relatively few large-scale detection, identification, and quantitative studies on flavonoids in the pericarp of bitter gourds of different colours. To determine the differences in the diversity and specificity of flavonoids in the pericarp of bitter gourd of different colours, the metabolic profiles in the pericarp of three coloured bitter gourd accessions, dark green (mo), pale green (lv), and white (bai), were analysed by ultra-performance liquid chromatography-tandem mass spectrometry. Priorly, it was confirmed that the different shades of green were caused by the content of chlorophyll. A total of 93 metabolites, including 90 flavonoids and three tannins, were detected in the current study. These 90 flavonoids included three isoflavones, nine dihydroflavones, seven flavanols, 34 flavonols, 26 flavonoids, four chalcones, five flavonoid carbonosides, and two dihydroflavonols. Compared to mo, both lv and bai had 21 and 25 different metabolites, respectively, while there were only nine different metabolites between lv and bai. The relative contents of vitexin and isovitexin increased with the deeper colour of the bitter gourd. Thus, the different metabolites in coloured bitter gourds are mainly involved in the biosynthesis of flavonols, flavonoid carbonosides, and flavonoids. This study enables identification of metabolic differences in the pericarp of bitter gourds of different colours. The results will be helpful for quality breeding of new bitter gourd varieties and shall provide a reference for their medical application. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01210-7.
Collapse
Affiliation(s)
- Hongmei Zhang
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Xuan Du
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Jizhu Yu
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Haijun Jin
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Na Liu
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| |
Collapse
|
10
|
Liu T, Bao C, Ban Q, Wang C, Hu T, Wang J. Genome-wide identification of sugar transporter gene family in Brassicaceae crops and an expression analysis in the radish. BMC PLANT BIOLOGY 2022; 22:245. [PMID: 35585498 PMCID: PMC9115943 DOI: 10.1186/s12870-022-03629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sugar not only is an important biomacromolecule that plays important roles in plant growth, development, and biotic and abiotic stress tolerance but also provides a skeleton for other macromolecules, such as proteins and nucleic acids. Sugar transporter proteins (STPs) play essential roles in plant sugar transport and ultimately affect the abovementioned life processes. However, the evolutionary dynamics of this important gene family in Brassicaceae crops are still largely unknown, and the functional differentiation of radish STP genes remains unclear. RESULTS In the present study, a comparative genomic study of STP genes in five representative Brassicaceae crops was conducted, and a total of 25, 25, 28, 36 and 49 STP genes were individually identified in Raphanus sativus (Rs), Brassica oleracea (Bo), B. rapa (Br), B. napus (Bn) and B. juncea (Bj), which were divided into four clades by phylogenetic analysis. The number of STP genes was no direct correlation with genome size and the total number of coding genes in Brassicaceae crops, and their physical and chemical properties showed no significant difference. Expression analysis showed that radish STP genes play vital roles not only in flower and seedpod development but also under heavy metal (cadmium, chromium and lead), NaCl and PEG-6000 stresses, Agrobacterium tumefaciens infection, and exogenous sugar treatment. RsSTP13.2 was significantly upregulated in the resistant radish cultivar by A. tumefaciens infection and induced by heavy metal, NaCl and PEG-6000 stress, indicating that it is involved in resistance to both biotic and abiotic stress in radish. CONCLUSIONS The present study provides insights into the evolutionary patterns of the STP gene family in Brassicaceae genomes and provides a theoretical basis for future functional analysis of STP genes in Brassicaceae crops.
Collapse
Affiliation(s)
- Tongjin Liu
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038 China
| | - Chonglai Bao
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Qiuyan Ban
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038 China
| | - Changyi Wang
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038 China
| | - Tianhua Hu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Jinglei Wang
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
11
|
Metabolic and transcriptome analysis of dark red taproot in radish (Raphanus sativus L.). PLoS One 2022; 17:e0268295. [PMID: 35536827 PMCID: PMC9089891 DOI: 10.1371/journal.pone.0268295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
The red color in radish taproots is an important quality index and is mainly affected by anthocyanins. However, the metabolite components and gene expression underlying dark red taproot color formation in radish remain elusive. In this study, the metabolites and gene expression patterns affecting anthocyanin biosynthesis were monitored in the dark red taproots. Comparative analysis of anthocyanin metabolites between dark red taproots and white taproots indicated that pelargonin and pelargonidin 3-O-beta-D-glucoside were the most promising dark red pigments responsible for the coloration of the taproots. Transcriptomic analysis of gene expression between dark red taproots and white taproots revealed that most of genes involved in the anthocyanin biosynthesis pathway were up-regulated in dark red taproots. In particular, RsCHS and RsDFR were the two most up-regulated genes in the dark red taproots. Moreover, the higher coexpression of two R2R3-Myb transcription factors, RsMYB1 and RsMYB2, may contribute to dark red color formation. Our work documents metabolomic and transcriptomic changes related to the dark red color formation in taproots radish and provides valuable data for anthocyanin-rich radish breeding.
Collapse
|
12
|
Gan S, Zheng G, Zhu S, Qian J, Liang L. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit. Metabolites 2022; 12:metabo12020144. [PMID: 35208218 PMCID: PMC8879266 DOI: 10.3390/metabo12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Liriope spicata is an important ornamental ground cover plant, with a fruit color that turns from green to black during the development and ripening stages. However, the material basis and regulatory mechanism of the color variation remains unclear. In this study, a total of 31 anthocyanins and 2 flavonols were identified from the skin of L. spicata fruit via integrative analysis on the metabolome and transcriptome of three developmental stages. The pigments of black/mature fruits are composed of five common anthocyanin compounds, of which Peonidin 3–O–rutinoside and Delphinidin 3–O–glucoside are the most differential metabolites for color conversion. Using dual-omics joint analysis, the mechanism of color formation was obtained as follows. The expression of structural genes including 4CL, F3H, F3′H, F3′5′H and UFGT were activated due to the upregulation of transcription factor genes MYB and bHLH. As a result, a large amount of precursor substances for the synthesis of flavonoids accumulated. After glycosylation, stable pigments were generated which promoted the accumulation of anthocyanins and the formation of black skin.
Collapse
|
13
|
Development of Molecular Markers for Predicting Radish ( Raphanus sativus) Flesh Color Based on Polymorphisms in the RsTT8 Gene. PLANTS 2021; 10:plants10071386. [PMID: 34371589 PMCID: PMC8309288 DOI: 10.3390/plants10071386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022]
Abstract
Red radish (Raphanus sativus L.) cultivars are a rich source of health-promoting anthocyanins and are considered a potential source of natural colorants used in the cosmetic industry. However, the development of red radish cultivars via conventional breeding is very difficult, given the unusual inheritance of the anthocyanin accumulation trait in radishes. Therefore, molecular markers linked with radish color are needed to facilitate radish breeding. Here, we characterized the RsTT8 gene isolated from four radish genotypes with different skin and flesh colors. Sequence analysis of RsTT8 revealed a large number of polymorphisms, including insertion/deletions (InDels), single nucleotide polymorphisms (SNPs), and simple sequence repeats (SSRs), between the red-fleshed and white-fleshed radish cultivars. To develop molecular markers on the basis of these polymorphisms for discriminating between radish genotypes with different colored flesh tissues, we designed four primer sets specific to the RsTT8 promoter, InDel, SSR, and WD40/acidic domain (WD/AD), and tested these primers on a diverse collection of radish lines. Except for the SSR-specific primer set, all primer sets successfully discriminated between red-fleshed and white-fleshed radish lines. Thus, we developed three molecular markers that can be efficiently used for breeding red-fleshed radish cultivars.
Collapse
|
14
|
Li YY, Han M, Wang RH, Gao MG. Comparative transcriptome analysis identifies genes associated with chlorophyll levels and reveals photosynthesis in green flesh of radish taproot. PLoS One 2021; 16:e0252031. [PMID: 34043661 PMCID: PMC8158985 DOI: 10.1371/journal.pone.0252031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022] Open
Abstract
The flesh of the taproot of Raphanus sativus L. is rich in chlorophyll (Chl) throughout the developmental process, which is why the flesh is green. However, little is known about which genes are associated with Chl accumulation in this non-foliar, internal green tissue and whether the green flesh can perform photosynthesis. To determine these aspects, we measured the Chl content, examined Chl fluorescence, and carried out comparative transcriptome analyses of taproot flesh between green-fleshed "Cuishuai" and white-fleshed "Zhedachang" across five developmental stages. Numerous genes involved in the Chl metabolic pathway were identified. It was found that Chl accumulation in radish green flesh may be due to the low expression of Chl degradation genes and high expression of Chl biosynthesis genes, especially those associated with Part Ⅳ (from Protoporphyrin Ⅸ to Chl a). Bioinformatics analysis revealed that differentially expressed genes between "Cuishuai" and "Zhedachang" were significantly enriched in photosynthesis-related pathways, such as photosynthesis, antenna proteins, porphyrin and Chl metabolism, carbon fixation, and photorespiration. Twenty-five genes involved in the Calvin cycle were highly expressed in "Cuishuai". These findings suggested that photosynthesis occurred in the radish green flesh, which was also supported by the results of Chl fluorescence. Our study provides transcriptome data on radish taproots and provides new information on the formation and function of radish green flesh.
Collapse
Affiliation(s)
- Yuan-yuan Li
- Department of Bioengineering, Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang University, Weifang, China
- * E-mail: (Y-yL); (M-gG)
| | - Min Han
- Department of Bioengineering, Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang University, Weifang, China
| | - Rui-hua Wang
- Department of Bioengineering, Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang University, Weifang, China
| | - Ming-gang Gao
- Department of Bioengineering, Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang University, Weifang, China
- * E-mail: (Y-yL); (M-gG)
| |
Collapse
|
15
|
Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Sci Rep 2021; 11:10721. [PMID: 34021210 PMCID: PMC8140124 DOI: 10.1038/s41598-021-90141-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Peanut is one of the important oil and economic crops, among which the variegated testa peanut is a unique member. The molecular mechanisms underlying the pigment synthesis in variegated testa are still unclear. Differentially expressed genes (DEGs) in the flavonoid metabolism pathway in pigmented areas indicated that there were 27 DEGs highly related to the synthesis of variegated testa color among 1,050 DEGs. Of these 27, 13 were up-regulated and 14 were down-regulated, including 3 PALs, 1 C4H, 2 CHSs, 1 F3H, 1 F3'H, 2 DFRs, 2 LARs, 2 IAAs, 4 bHLHs, and 9 MYBs. GO (Gene Ontology) analysis indicated that DEGs were similarly enriched in three branches. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis suggested flavonoid biosynthesis is the most direct metabolic pathway for the synthesis of testa variegation. The liquid chromatography–tandem mass spectrometry (LC–MS/MS) results showed that cyanidin and delphinidin were the primary metabolites that caused the color differences between the pigmented and the non-pigmented areas. Through the verification of 20 DEGs via qPCR, the results were consistent with transcriptome sequencing in four comparison groups. The results in this study lay the foundation for revealing the molecular regulation mechanisms of flavonoid synthesis in variegated testa peanut.
Collapse
|
16
|
Maritim TK, Masand M, Seth R, Sharma RK. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Sci Rep 2021; 11:1244. [PMID: 33441891 PMCID: PMC7806957 DOI: 10.1038/s41598-020-80437-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Purple-tea, an anthocyanin rich cultivar has recently gained popularity due to its health benefits and captivating leaf appearance. However, the sustainability of purple pigmentation and anthocyanin content during production period is hampered by seasonal variation. To understand seasonal dependent anthocyanin pigmentation in purple tea, global transcriptional and anthocyanin profiling was carried out in tea shoots with two leaves and a bud harvested during in early (reddish purple: S1_RP), main (dark gray purple: S2_GP) and backend flush (moderately olive green: S3_G) seasons. Of the three seasons, maximum accumulation of total anthocyanin content was recorded in S2_GP, while least amount was recorded during S3_G. Reference based transcriptome assembly of 412 million quality reads resulted into 71,349 non-redundant transcripts with 6081 significant differentially expressed genes. Interestingly, key DEGs involved in anthocyanin biosynthesis [PAL, 4CL, F3H, DFR and UGT/UFGT], vacuolar trafficking [ABC, MATE and GST] transcriptional regulation [MYB, NAC, bHLH, WRKY and HMG] and Abscisic acid signaling pathway [PYL and PP2C] were significantly upregulated in S2_GP. Conversely, DEGs associated with anthocyanin degradation [Prx and lac], repressor TFs and key components of auxin and ethylene signaling pathways [ARF, AUX/IAA/SAUR, ETR, ERF, EBF1/2] exhibited significant upregulation in S3_G, correlating positively with reduced anthocyanin content and purple coloration. The present study for the first-time elucidated genome-wide transcriptional insights and hypothesized the involvement of anthocyanin biosynthesis activators/repressor and anthocyanin degrading genes via peroxidases and laccases during seasonal induced leaf color transition in purple tea. Futuristically, key candidate gene(s) identified here can be used for genetic engineering and molecular breeding of seasonal independent anthocyanin-rich tea cultivars.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.,Tea Breeding and Genetic Improvement Division, KALRO-Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Mamta Masand
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Romit Seth
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
| | - Ram Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
17
|
Zhang J, Qiu X, Tan Q, Xiao Q, Mei S. A Comparative Metabolomics Study of Flavonoids in Radish with Different Skin and Flesh Colors ( Raphanus sativus L .). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14463-14470. [PMID: 33216541 DOI: 10.1021/acs.jafc.0c05031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Radish (Raphanus sativus) is an important worldwide vegetable with a wide variety of colors that affect its appearance and nutritional quality. However, the large-scale detection, identification, and quantification of flavonoids in multicolor radish have rarely been studied. To uncover the diversity and accession-specific flavonoids in radish, liquid chromatography electrospray ionization-tandem mass spectrometry was used to analyze the metabolic profiles in the skin and flesh of six colored radish accessions: light-red Manshenhong, dark-red Touxinhong (TXH), purple Zijinling (ZJL), Xinlimei with red flesh (XLMF) and green skin, white Shizhuangbai (SZB), and black radish. In total, 133 flavonoids, including 16 dihydroflavones, 44 flavones, 14 flavonoids, 9 anthocyanins, and 28 flavonols, were characterized. The flavonoid metabolic profiles differed among the different colored radishes. Red and purple radishes contained similar anthocyanin compounds responsible for color pigmentation, including red cyanidin, callistephin, and pelargonin. Purple ZJL was most enriched with cyanidin o-syringic acid and cyanin, whereas callistephin and pelargonin were more abundant in dark-red TXH. Additionally, the black and white radishes shared similar anthocyanin and flavonoid profiles, suggesting that the color of black radishes was not caused by anthocyanin but by other metabolites. The metabolites in colored radishes that differed from SZB were mainly involved in the biosynthesis of plant secondary metabolites, such as flavonoid, flavone, flavonol, isoflavonoid, and phenylpropanoid biosynthesis. This study provides new insights into the differences in metabolite profiles among radishes with different skin and flesh colors. The results will be useful for aiding the cultivation of valuable new radish varieties.
Collapse
Affiliation(s)
- Jifang Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| | - Qunyun Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| | - Qingming Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| | - Shiyong Mei
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| |
Collapse
|
18
|
Wang Q, Wang Y, Sun H, Sun L, Zhang L. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2537-2550. [PMID: 31961436 PMCID: PMC7210773 DOI: 10.1093/jxb/eraa010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/17/2020] [Indexed: 05/20/2023]
Abstract
Red-fleshed radish (Raphanus sativus L.) is a unique cultivar whose taproot is rich in anthocyanins beneficial to human health. However, the frequent occurrence of white-fleshed mutants affects the purity of commercially produced radish and the underlying mechanism has puzzled breeders for many years. In this study, we combined quantitative trait location by genome resequencing and transcriptome analyses to identify a candidate gene (RsMYB1) responsible for anthocyanin accumulation in red-fleshed radish. However, no sequence variation was found in the coding and regulatory regions of the RsMYB1 genes of red-fleshed (MTH01) and white-fleshed (JC01) lines, and a 7372 bp CACTA transposon in the RsMYB1 promoter region occurred in both lines. A subsequent analysis suggested that the white-fleshed mutant was the result of altered DNA methylation in the RsMYB1 promoter. This heritable epigenetic change was due to the hypermethylated CACTA transposon, which induced the spreading of DNA methylation to the promoter region of RsMYB1. Thus, RsMYB1 expression was considerably down-regulated, which inhibited anthocyanin biosynthesis in the white-fleshed mutant. An examination of transgenic radish calli and the results of a virus-induced gene silencing experiment confirmed that RsMYB1 is responsible for anthocyanin accumulation. Moreover, the mutant phenotype was partially eliminated by treatment with a demethylating agent. This study explains the molecular mechanism regulating the appearance of white-fleshed mutants of red-fleshed radish.
Collapse
Affiliation(s)
- Qingbiao Wang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yanping Wang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Honghe Sun
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Liang Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Li Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Correspondence:
| |
Collapse
|
19
|
Identification and differential expression analysis of anthocyanin biosynthetic genes in root-skin color variants of radish (Raphanus sativus L.). Genes Genomics 2020; 42:413-424. [PMID: 31997158 DOI: 10.1007/s13258-020-00915-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Taproot skin color is a major trait for assessing the commercial and nutritional quality of radish, and red-skinned radish is confirmed to improve consumer's interest and health. However, little is known about the molecular mechanisms responsible for controlling the formation of red-skinned radish. OBJECTIVE This study aimed to identify the differentially expressed anthocyanin biosynthetic genes between red- and white-skinned radishes and understand the molecular regulatory mechanism underlying red-skinned radish formation. METHODS Based on the published complete genome sequence of radish, the digital gene expression profiles of Yangzhouyuanbai (YB, white-skinned) and Sading (SD, red-skinned) were analyzed using Illumina sequencing. RESULTS A total of 3666 DEGs were identified in SD compared with YB. Interestingly, 46 genes encoded enzymes related to anthocyanin biosynthesis and 241 genes encoded transcription factors were identified. KEGG pathway analysis showed that the formation of red-skinned radish was mainly controlled by pelargonidin-derived anthocyanin biosynthetic pathway genes. This process included the upregulation of PAL, C4H, 4CL, CHS, CHI, F3H, DFR, LDOX, and UGT enzymes in SD. CHS genes were specifically expressed in SD, and it might be the key point for red pigment accumulation in red-skinned radish. Furthermore, MYB1/2/75, bHLH (TT8), and WD 40 showed higher expression in SD than in YB. Meanwhile, the corresponding low-abundance anthocyanin biosynthesis enzymes and upregulation of MYB4 might be the factors influencing the formation of white-skinned radish. CONCLUSION These findings provide new insights into the molecular mechanisms and regulatory network of anthocyanin biosynthesis in red-skinned radish.
Collapse
|
20
|
Liu T, Wang J, Wu C, Zhang Y, Zhang X, Li X, Wang H, Song J, Li X. Combined QTL-Seq and Traditional Linkage Analysis to Identify Candidate Genes for Purple Skin of Radish Fleshy Taproots. Front Genet 2019; 10:808. [PMID: 31608100 PMCID: PMC6764292 DOI: 10.3389/fgene.2019.00808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/02/2019] [Indexed: 12/01/2022] Open
Abstract
Taproot skin color is a crucial visual and nutritional quality trait of radish, and purple skin is most attractive to consumers. However, the genetic mechanism underlying this character is unknown. Herein, F2 segregating populations were constructed to investigate radish genomic regions with purple skin genes. Segregation analysis suggested that pigment presence was controlled by one dominant gene, Rsps. A bulk segregant approach coupled to whole-genome sequencing (QTL-seq) and classical linkage mapping narrowed the Rsps location to a 238.51-kb region containing 18 genes. A gene in this region, designated RsMYB1.1 (an Arabidopsis PAP1 homolog), was a likely candidate gene because semiquantitative RT-PCR and quantitative real-time PCR revealed RsMYB1.1 expression in only purple-skinned genotypes, sequence variation was found between white- and purple-skinned radishes, and an InDel marker in this gene correctly predicted taproot skin color. Furthermore, four RsMYB1.1 homologs (RsMYB1.1-1.4) were found in “XYB36-2” radish. RsMYB1.1 and the previously mapped and cloned RsMYB1.4 (contributing to red skin) were located on different chromosomes and in different subclades of a phylogenetic tree; thus, they are different genes. These findings provide insight into the complex anthocyanin biosynthesis regulation in radish and information for molecular breeding to improve the anthocyanin content and appearance of radish taproots.
Collapse
Affiliation(s)
- Tongjin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| | - Jinglei Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China.,Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chunhui Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| | - Xiaoman Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|