1
|
de Oliveira I, Chrysargyris A, Finimundy TC, Carocho M, Santos-Buelga C, Calhelha RC, Tzortzakis N, Barros L, Heleno SA. The influence of magnesium and manganese cations on the chemical and bioactive properties of purple and green basil. Food Funct 2024; 15:10644-10662. [PMID: 39376008 DOI: 10.1039/d4fo02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This research investigated the effects of hydroponic cultivation with enriched concentrations of magnesium (+Mg), manganese (+Mn), a combination of +Mg and +Mn, or decreased concentrations of these minerals (control) on the nutritional, chemical, and bioactive attributes of purple and green basil. While Mn significantly increased the growth of purple basil and affected the composition of essential oil and mineral accumulation, plants treated with Mg showed alterations in nutrient absorption. Protein values were lower, indicating suboptimal protein synthesis, but significant increases were observed in fat, ash, and carbohydrates, suggesting a more nutrient-rich composition due to hydroponic cultivation. Regarding phenolic compounds, green basil showed higher concentrations of rosmarinic acid with +Mg+Mn, while purple basil exhibited lower levels with the addition of +Mn or +Mg+Mn. Antioxidant activities mirrored the phenolic profile, with purple basil displaying superior performance in the thiobarbituric acid-reactive substance (TBARS) test with +Mg treatment, and green basil showing higher activity in the cell antioxidant activity (CAA) test with the +Mg+Mn combination. In microbiological analyses, purple basil was more effective against S. aureus, while green basil performed better against L. monocytogenes. Although none were bactericidal, all treatments showed potential as antimicrobials. Purple basil extracts had significant antiproliferative effects on tumor cell lines, especially non-small cell lung carcinoma (NCI-H460), with synergistic effects observed in gastric adenocarcinoma (AGS) with +Mg+Mn. Additionally, +Mg+Mn demonstrated unique efficacy against colorectal adenocarcinoma (CaCo2) and breast carcinoma (MFC-7 cells), without toxicity to non-tumor a renal epithelial cell line from an African green monkey (VERO) cell, emphasizing the safety of the extracts. Green basil extracts showed no activity against the tumor cell lines analyzed (AGS, Caco2, MFC-7 and NCI-H460); however, they revealed remarkable antiproliferative effects against NCI-H460 cells in the control group. The results are important because they show how mineral treatments, such as the use of magnesium and manganese, influence the nutritional and medicinal properties of purple and green basil leaves. This highlights the relevance of manipulating nutrient solutions to improve plant quality, which is crucial for the production of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Izamara de Oliveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Taha NM, Zalat RS, Khaled E, Elmansory BM. Evaluation of the therapeutic efficacy of some essential oils in experimentally immunosuppressed mice infected with Cryptosporidium parvum. J Parasit Dis 2023; 47:733-743. [PMID: 38009149 PMCID: PMC10667177 DOI: 10.1007/s12639-023-01621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 11/28/2023] Open
Abstract
Cryptosporidiosis is a serious intestinal disease affecting mal-nourished children and immunocompromised individuals with severe fatal diarrhea. Our present work was done to evaluate the possible curative effects of different essential oils (Mint, Thyme, Chamomile and Basil) on Cryptosporidium parvum (C. parvum) in vivo compared with nitazoxanide (NTZ). Seventy immunosuppressed white Albino male mice were allocated in 7 groups as follows: group I infected and not treated (Positive control), group II (GII) treated with NTZ, group III (GIII) treated with Mint essential oil, group IV (GIV) treated with Thyme essential oil, group V (GV) treated with Chamomile essential oil, group VI (GVI) treated with Basil essential oil and group VII (GVII) naïve not infected mice (Negative control). Evaluation was done using parasitological, histopatholgical, serological as well as biochemical methods. All study groups revealed significant reduction (P value < 0.01) in the mean number of C. parvum oocysts in stool. Results of GII were the best with 87.7% reduction in the oocysts count followed by GIII (77.9%), GIV (74.7%), GVI (68.2%) and lastly GV (67.2%). Improvement of the histopathological damage in the small intestine was shown in treated groups. All treated mice showed significant upregulation in the interferon gamma (IFN-γ) levels, significant reduction in the malondialdehyde (MDA) levels and increase in superoxide dismutase (SOD) levels (P value < 0.0001). It is concluded that Mint, Thyme, Chamomile and Basil oils showed promising anti-cryptosporidial, anti-inflammatory and antioxidant functions.
Collapse
Affiliation(s)
- Noha Madbouly Taha
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab Sayed Zalat
- Department of Parasitology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Eman Khaled
- Department of Surgical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma M. Elmansory
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
El-Gioushy SF, Ding Z, Bahloul AME, Gawish MS, Abou El Ghit HM, Abdelaziz AMRA, El-Desouky HS, Sami R, Khojah E, Hashim TA, Kheir AMS, Zewail RMY. Foliar Application of Nano, Chelated, and Conventional Iron Forms Enhanced Growth, Nutritional Status, Fruiting Aspects, and Fruit Quality of Washington Navel Orange Trees ( Citrus sinensis L. Osbeck). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122577. [PMID: 34961050 PMCID: PMC8704722 DOI: 10.3390/plants10122577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/01/2023]
Abstract
Iron (Fe) is required for most metabolic processes, including DNA synthesis, respiration, photosynthesis, and chlorophyll biosynthesis; however, Fe deficiency is common in arid regions, necessitating additional research to determine the most efficient form of absorbance. Nano-fertilizers have characteristics that are not found in their traditional equivalents. This research was implemented on Washington navel orange trees (Citrus sinensis L. Osbeck) to investigate the effect of three iron forms-nano (Fe-NPs), sulfate (FeSO4), and chelated (Fe-chelated)-as a foliar spray on the growth, fruiting aspects, and nutritional status of these trees compared to control. The highest values of the tested parameters were reported when the highest Fe-NPs level and the highest Fe-chelated (EDTA) rate were used. Results obtained here showed that the spraying of the Washington navel orange trees grown under similar environmental conditions and horticulture practices adopted in the current experiment with Fe-NPs (nanoform) and/or Fe-chelated (EDTA) at 0.1% is a beneficial application for enhancing vegetative growth, flower set, tree nutritional status, and fruit production and quality. Application of Fe-NPs and Fe-chelated (EDTA, 0.1%) increased yield by 32.0% and 25% and total soluble solids (TSS) by 18.5% and 17.0%, respectively, compared with control. Spraying Washington navel orange trees with nano and chelated iron could be considered a significant way to improve vegetative growth, fruit production, quality, and nutritional status while also being environmentally preferred in the arid regions.
Collapse
Affiliation(s)
- Sherif F. El-Gioushy
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China;
- Horticulture Department, Faculty of Agriculture (Moshtohor), Benha University, Toukh 13736, Egypt
| | - Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China;
| | - Asmaa M. E. Bahloul
- Department of Agricultural Economics, Faculty of Agriculture (Moshtohor), Banha University, Toukh 13736, Egypt;
| | - Mohamed S. Gawish
- Pomology Department, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| | - Hanan M. Abou El Ghit
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11111, Egypt;
| | | | - Heba S. El-Desouky
- Botany Department, Faculty of Agriculture (Moshtohor), Benha University, Toukh 13736, Egypt; (H.S.E.-D.); (R.M.Y.Z.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (R.S.); (E.K.)
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (R.S.); (E.K.)
| | - Taghred A. Hashim
- Soil and Water Department, Faculty of Agriculture (Moshtohor), Benha University, Toukh 13736, Egypt;
| | - Ahmed M. S. Kheir
- International Center of Biosaline Agriculture, ICBA, Dubai 14660, United Arab Emirates
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Reda M. Y. Zewail
- Botany Department, Faculty of Agriculture (Moshtohor), Benha University, Toukh 13736, Egypt; (H.S.E.-D.); (R.M.Y.Z.)
| |
Collapse
|
4
|
Basil Essential Oil: Methods of Extraction, Chemical Composition, Biological Activities, and Food Applications. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02690-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Responses of Medicinal and Aromatic Plants to Engineered Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medicinal and aromatic plants have been used by mankind since ancient times. This is primarily due to their healing effects associated with their specific secondary metabolites (some of which are also used as drugs in modern medicine), or their structures, served as a basis for the development of new effective synthetic drugs. One way to increase the production of these secondary metabolites is to use nanoparticles that act as elicitors. However, depending on the specific particle size, composition, concentration, and route of application, nanoparticles may have several other benefits on medicinal and aromatic plants (e.g., increased plant growth, improved photosynthesis, and overall performance). On the other hand, particularly at applications of high concentrations, they are able to damage plants mechanically, adversely affect morphological and biochemical characteristics of plants, and show cytotoxic and genotoxic effects. This paper provides a comprehensive overview of the beneficial and adverse effects of metal-, metalloid-, and carbon-based nanoparticles on the germination, growth, and biochemical characteristics of a wide range of medicinal and aromatic plants, including the corresponding mechanisms of action. The positive impact of nanopriming and application of nanosized fertilizers on medicinal and aromatic plants is emphasized. Special attention is paid to the effects of various nanoparticles on the production of valuable secondary metabolites in these plants cultivated in hydroponic systems, soil, hairy root, or in vitro cultures. The beneficial impact of nanoparticles on the alleviation of abiotic stresses in medicinal and aromatic plants is also discussed.
Collapse
|
6
|
Mohammad Ghasemi V, Siavash Moghaddam S, Rahimi A, Pourakbar L, Popović-Djordjević J. Winter Cultivation and Nano Fertilizers Improve Yield Components and Antioxidant Traits of Dragon's Head ( Lallemantia iberica (M.B.) Fischer & Meyer). PLANTS 2020; 9:plants9020252. [PMID: 32079133 PMCID: PMC7076703 DOI: 10.3390/plants9020252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022]
Abstract
Balangu (Lallemantia sp.) is a medicinal herb with a variety of applications, all parts of which have economic uses, including leaf for extraction of essential oils, as a vegetable and potherb, seed for extraction of mucilage and edible or industrial oil. To investigate the effect of cultivation season and standard chemical and nano fertilizers (n) on the yield components and antioxidant properties of Dragon’s head, a factorial experiment based on randomized complete block design was conducted with 12 treatments and three replications. Experimental treatments consisted of two seasons (spring and winter cultivation) and six levels of fertilizer (control, NPK-s, NPK-n, Fe-chelated-n, NPK-n + Fe-chelated-n, NPK-s + NPK-n + Fe-chelated-n). The traits included grain yield per plant, essential oil percentage and yield, mucilage percentage and yield, antioxidant properties in the seeds and leaves, including total phenols and flavonoids content, DPPH radical scavenging, and nitric oxide and superoxide radical scavenging. The results showed that winter cultivation had a noticeable advantage over spring cultivation across all of the traits. The highest grain yield per plant was obtained in winter cultivation using NPK-n + Fe-chelated-n fertilizer treatment. The highest essential oil percentage was in NPK-n + Fe-chelated-n. The highest mucilage percentage was observed in NPK-s + NPK-n + Fe-chelated-n fertilizer treatment, which was not statistically different to NPK-n + Fe-chelated-n treatment. The combined effects of winter cultivation and NPK-n + Fe-chelated-n fertilizers resulted in improving antioxidant activity traits. Overall, the results indicated that the combination of winter cultivation and NPK-n + Fe-chelated-n fertilizers are the most appropriate treatment to acquire highest qualitative and quantitative yield of Dragon’s head, in the Azerbaijan region (Iran).
Collapse
Affiliation(s)
- Vida Mohammad Ghasemi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran; (V.M.G.); (A.R.)
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran; (V.M.G.); (A.R.)
- Correspondence: ; Tel.: +98-9113335716
| | - Amir Rahimi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran; (V.M.G.); (A.R.)
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia 5756151818, Iran;
| | - Jelena Popović-Djordjević
- Department of Food Technology and Biochemistry, Faculty of, University of Belgrade, 11080 Belgrade, Serbia;
| |
Collapse
|