1
|
Li H, Liu C, Kan J, Lin J, Li X. Integrated Methylome and Transcriptome Analysis between Wizened and Normal Flower Buds in Pyrus pyrifolia Cultivar 'Sucui 1'. Int J Mol Sci 2024; 25:7180. [PMID: 39000285 PMCID: PMC11241763 DOI: 10.3390/ijms25137180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Here, cytosine methylation in the whole genome of pear flower buds was mapped at a single-base resolution. There was 19.4% methylation across all sequenced C sites in the Pyrus pyrifolia cultivar 'Sucui 1' flower bud genome. Meantime, the CG, CHG, and CHH sequence contexts (where H = A, T or C) exhibited 47.4%, 33.3%, and 11.9% methylation, respectively. Methylation in different gene regions was revealed through combining methylome and transcriptome analysis, which presented various transcription trends. Genes with methylated promoters exhibited lower expression levels than genes with non-methylated promoters, while body-methylated genes displayed an obvious negative correlation with their transcription levels. The methylation profiles of auxin- and cytokinin-related genes were estimated. And some of them proved to be hypomethylated, with increased transcription levels, in wizened buds. More specifically, the expression of the genes PRXP73, CYP749A22, and CYP82A3 was upregulated as a result of methylation changes in their promoters. Finally, auxin and cytokinin concentrations were higher in wizened flower buds than in normal buds. The exogenous application of paclobutrazol (PP333) in the field influenced the DNA methylation status of some genes and changed their expression level, reducing the proportion of wizened flower buds in a concentration-dependent manner. Overall, our results demonstrated the relationship between DNA methylation and gene expression in wizened flower buds of P. pyrifolia cultivar 'Sucui 1', which was associated with changes in auxin and cytokinin concentrations.
Collapse
Affiliation(s)
| | | | | | | | - Xiaogang Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.L.); (J.K.); (J.L.)
| |
Collapse
|
2
|
Li X, Lian T, Su B, Liu H, Wang Y, Wu X, He J, Wang Y, Xu Y, Yang S, Li Y. Construction of a physiologically based pharmacokinetic model of paclobutrazol and exposure estimation in the human body. Toxicology 2024; 505:153841. [PMID: 38796053 DOI: 10.1016/j.tox.2024.153841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Paclobutrazol (PBZ) is a plant growth regulator that can delay plant growth and improve plant resistance and yield. Although it has been widely used in the growth of medicinal plants, human beings may take it by taking traditional Chinese medicine. There are no published studies on PBZ exposure in humans or standardized limits for PBZ in medicinal plants. We measured the solubility, oil-water partition coefficient (logP), and pharmacokinetics of PBZ in rats and established a physiologically based pharmacokinetic (PBPK) model of PBZ in rats. This was followed by extrapolation to healthy Chinese adult males as a theoretical foundation for future risk assessment of PBZ. The results showed that PBZ had low solubility and high fat solubility. Pharmacokinetic experiments showed that PBZ was absorbed rapidly but eliminated slowly in rats. On this basis, the rat PBPK model was successfully constructed and extrapolated to healthy Chinese adult males to predict the plasma concentration-time curve and exposure of PBZ in humans. The construction of the PBPK model of PBZ in this study facilitates the determination of the standard formulation limits and risk assessment of PBZ residues in medicinal plants.
Collapse
Affiliation(s)
- Xiaomeng Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Tingting Lian
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Buda Su
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Xiaoyan Wu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yue Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Shenshen Yang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Hýsková V, Jakl M, Jaklová Dytrtová J, Ćavar Zeljković S, Vrobel O, Bělonožníková K, Kavan D, Křížek T, Šimonová A, Vašková M, Kovač I, Račko Žufić A, Ryšlavá H. Antifungal triazoles affect key non-target metabolic pathways in Solanum lycopersicum L. plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115729. [PMID: 38000304 DOI: 10.1016/j.ecoenv.2023.115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Several 1,2,4-triazoles are widely used as systemic fungicides in agriculture because they inhibit fungal 14ɑ-demethylase. However, they can also act on many non-target plant enzymes, thereby affecting phytohormonal balance, free amino acid content, and adaptation to stress. In this study, tomato plants (Solanum lycopersicum L. var. 'Cherrola') were exposed to penconazole, tebuconazole, or their combination, either by foliar spraying or soil drenching, every week, as an ecotoxicological model. All triazole-exposed plants showed a higher content (1.7-8.8 ×) of total free amino acids than the control, especially free glutamine and asparagine were increased most likely in relation to the increase in active cytokinin metabolites 15 days after the first application. Conversely, the Trp content decreased in comparison with control (0.2-0.7 ×), suggesting depletion by auxin biosynthesis. Both triazole application methods slightly affected the antioxidant system (antioxidant enzyme activity, antioxidant capacity, and phenolic content) in tomato leaves. These results indicated that the tomato plants adapted to triazoles over time. Therefore, increasing the abscisic and chlorogenic acid content in triazole-exposed plants may promote resistance to abiotic stress.
Collapse
Affiliation(s)
- Veronika Hýsková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Michal Jakl
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague-Suchdol, Czech Republic
| | - Jana Jaklová Dytrtová
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, Prague 6, Czech Republic
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Kateřina Bělonožníková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Daniel Kavan
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Tomáš Křížek
- Charles University, Faculty of Science, Department of Analytical Chemistry, Prague 2, Czech Republic
| | - Alice Šimonová
- Charles University, Faculty of Science, Department of Analytical Chemistry, Prague 2, Czech Republic
| | - Marie Vašková
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Ishak Kovač
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, Prague 6, Czech Republic
| | - Antoniana Račko Žufić
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Helena Ryšlavá
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic.
| |
Collapse
|
4
|
Wang J, Xue L, Zhang X, Hou Y, Zheng K, Fu D, Dong W. A New Function of MbIAA19 Identified to Modulate Malus Plants Dwarfing Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3097. [PMID: 37687343 PMCID: PMC10490418 DOI: 10.3390/plants12173097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The primary determinants of apple (Malus) tree architecture include plant height and internode length, which are the significant criteria for evaluating apple dwarf rootstocks. Plant height and internode length are predominantly governed by phytohormones. In this study, we aimed to assess the mechanisms underlying dwarfism in a mutant of Malus baccata. M. baccata dwarf mutant (Dwf) was previously obtained through natural mutation. It has considerably reduced plant height and internode length. A comparative transcriptome analysis of wild-type (WT) and Dwf mutant was performed to identify and annotate the differentially expressed genes responsible for the Dwf phenotype using RNA-seq and GO and KEGG pathway enrichment analyses. Multiple DEGs involved in hormone signaling pathways, particularly auxin signaling pathways, were identified. Moreover, the levels of endogenous indole-3-acetic acid (IAA) were lower in Dwf mutant than in WT. The Aux/IAA transcription factor gene MbIAA19 was downregulated in Dwf mutant due to a single nucleotide sequence change in its promoter. Genetic transformation assay demonstrated strong association between MbIAA19 and the dwarf phenotype. RNAi-IAA19 lines clearly exhibited reduced plant height, internode length, and endogenous IAA levels. Our study revealed that MbIAA19 plays a role in the regulation of dwarfism and endogenous IAA levels in M. baccata.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.W.); (L.X.); (X.Z.); (Y.H.); (K.Z.); (D.F.)
| |
Collapse
|
5
|
Usenko A, Chýlková J, Váňa J, Matvieiev O, Janíková L, Šelešovská R. A new voltammetric approach for the determination of the insecticide paclobutrazol in the presence of difenoconazole in pesticide preparations. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Paclobutrazol Ameliorates Low-Light-Induced Damage by Improving Photosynthesis, Antioxidant Defense System, and Regulating Hormone Levels in Tall Fescue. Int J Mol Sci 2022; 23:ijms23179966. [PMID: 36077362 PMCID: PMC9456200 DOI: 10.3390/ijms23179966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Paclobutrazol (PBZ) is a plant-growth regulator (PGR) in the triazole family that enhances plant tolerance to environmental stresses. Low-light (LL) intensity is a critical factor adversely affecting the growth of tall fescue (Festuca arundinacea Schreb.). Therefore, in this study, tall fescue seedlings were treated with PBZ under control and LL conditions to investigate the effects of PBZ on enhancing LL stress resistance by regulating the growth, photosynthesis, oxidative defense, and hormone levels. Our results reveal that LL stress reduced the total biomass, chlorophyll (Chl) content, photosynthetic capacity, and photochemical efficiency of photosystem II (PSII) but increased the membrane lipid peroxidation level and reactive oxygen species (ROS) generation. However, the application of PBZ increased the photosynthetic pigment contents, net photosynthetic rate (Pn), maximum quantum yield of PSII photochemistry (Fv/Fm), ribulose-1,5-bisphosphate carboxylase (RuBisCO) activity, and starch content. In addition, PBZ treatment activated the antioxidant enzyme activities, antioxidants contents, ascorbate acid-glutathione (AsA-GSH) cycle, and related gene expression, lessening the ROS burst (H2O2 and O2∙−). However, the gibberellic acid (GA) anabolism was remarkably decreased by PBZ treatment under LL stress, downregulating the transcript levels of kaurene oxidase (KO), kaurenoic acid oxidase (KAO), and GA 20-oxidases (GA20ox). At the same time, PBZ treatment up-regulated 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, significantly increasing the endogenous abscisic acid (ABA) concentration under LL stress. Thus, our study revealed that PBZ improves the antioxidation and photosynthetic capacity, meanwhile increasing the ABA concentration and decreasing GA concentration, which ultimately enhances the LL stress tolerance in tall fescue.
Collapse
|
7
|
Liu Z, Tong X, Liu R, Zou L. Metabolome and Transcriptome Profiling Reveal That Four Terpenoid Hormones Dominate the Growth and Development of Sanghuangporus baumii. J Fungi (Basel) 2022; 8:jof8070648. [PMID: 35887404 PMCID: PMC9317858 DOI: 10.3390/jof8070648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Sanghuangporus baumii is a traditional medicinal fungus that produces pharmacological terpenoids, but natural resources are insufficient for applications, and its growth and development mechanisms are poorly understood. Combining metabolomic and transcriptomic analyses, we found four terpenoid hormones and a central gene, isopentenyl diphosphate isomerase (IDI), involved in growth and development. Additionally, an exogenous hormone test was used to further confirm the importance of the four terpenoid hormones. Finally, hormone content determination and qRT−PCR were performed to explore the growth and development mechanism; we found thatcis-zeatin (CZ) plays a major role in the mycelia stage, trans-zeatin (TZ) and gibberellin A4 (GA4) are important in the primordia stage, GA4 is crucial for the fruiting bodies stage, and abscisic acid (ABA) may be a marker of maturity. The IDI gene was also found to affectterpenoid hormone content by regulating the relative gene transcript levels, thereby controlling morphological changes in S. baumii. Our results revealthe growth and development mechanisms of S. baumii and may promote the breeding and utilisation of high-quality varieties.
Collapse
Affiliation(s)
| | | | | | - Li Zou
- Correspondence: ; Tel.: +86-0451-86660457
| |
Collapse
|
8
|
El-Sayed SM, Hassan KM, Abdelhamid AN, Yousef EE, Abdellatif YMR, Abu-Hussien SH, Nasser MA, Elshalakany WA, Darwish DBE, Abdulmajeed AM, Alabdallah NM, Al-Qahtani SM, Al-Harbi NA, Dessoky ES, Ashour H, Ibrahim MFM. Exogenous Paclobutrazol Reinforces the Antioxidant and Antimicrobial Properties of Lavender (Lavandula officinalis L.) Oil through Modulating Its Composition of Oxygenated Terpenes. PLANTS (BASEL, SWITZERLAND) 2022; 11:1607. [PMID: 35736758 PMCID: PMC9230930 DOI: 10.3390/plants11121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Plant growth regulators can affect the primary and secondary metabolites of various plant species. However, the effect of paclobutrazol (PBZ) on the composition of lavender oil, especially related to the terpenoid pathway, is still unclear in literatures. In this study, the effect of PBZ as a foliar spray (0.200, 400 and 600 ppm) on the vegetative growth, phytochemical content, and both antioxidant and antimicrobial properties of lavender oil were investigated. The results indicated that all examined PBZ treatments led to a significant (p ≤ 0.05) decrease in growth parameters compared to the untreated plants. Meanwhile, the yield of essential oil was significantly decreased by the treatment of PBZ at 200 ppm compared to the control. In contrast, applied-PBZ significantly enhanced the chlorophyll content and displayed a marked change in the composition of the essential oil. This change included an obvious and significant increase in 3-carene, eucalyptol, γ-terpinene, α-pinocarvone, caryophyllene, β-vetivenene, β-santalol, ledol, geranyl isovalerate, farnesol, caryophyllene oxide, and phytol percentage. Generally, the highest significant values were achieved by the treatment of 400 ppm compared to the other treatments. Furthermore, this treatment showed the highest free radical scavenging activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) by 13% over the control. Additionally, to determine the antimicrobial activities of the extracted oil, each treatment was examined against two strains of Gram positive bacteria (S. aureus and B. cereus), two strains of Gram negative bacteria (S. enteritidis and E. coli), and two fungal species (C. albicans and A. niger) represent the yeast modal and filamentous fungus, respectively. The findings demonstrated that all examined species were more sensitive to the oil that was extracted from lavender plants, treated with 400 ppm PBZ, compared to the other concentrations.
Collapse
Affiliation(s)
- Salwa M. El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (S.M.E.-S.); (W.A.E.)
| | - Karim. M. Hassan
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (K.M.H.); (A.N.A.); (M.A.N.)
| | - Ahmed. N. Abdelhamid
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (K.M.H.); (A.N.A.); (M.A.N.)
| | - Eman E. Yousef
- Department of Food Science and Technology, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Yasmin M. R. Abdellatif
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (Y.M.R.A.); (H.A.)
| | - Samah H. Abu-Hussien
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Mohamed A. Nasser
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (K.M.H.); (A.N.A.); (M.A.N.)
| | - Walaa. A. Elshalakany
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (S.M.E.-S.); (W.A.E.)
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt;
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia;
| | - Awatif M. Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Eldessoky S. Dessoky
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hatem Ashour
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (Y.M.R.A.); (H.A.)
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (Y.M.R.A.); (H.A.)
| |
Collapse
|
9
|
Novel Dual-Color Immunochromatographic Assay Based on Chrysanthemum-like Au@polydopamine and Colloidal Gold for Simultaneous Sensitive Detection of Paclobutrazol and Carbofuran in Fruits and Vegetables. Foods 2022; 11:foods11111564. [PMID: 35681314 PMCID: PMC9180898 DOI: 10.3390/foods11111564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
To ensure food safety and prevent the toxic effects of paclobutrazol (PBZ) and carbofuran (CAR) on humans, a sensitive and rapid method for the detection of PBZ and CAR in fruits and vegetables is required. Herein, a highly sensitive PBZ monoclonal antibody (PBZ mAb) and CAR monoclonal antibody (CAR mAb) with half-inhibitory concentrations (IC50) at 0.77 and 0.82 ng mL−1 were prepared, respectively. We proposed a novel dual-color immunochromatographic assay (ICA) with two test lines (T1 and T2) and an independent control line (C) based on chrysanthemum-like Au@Polydopamine (AuNC@PDA) and colloidal gold (AuNPs) for the simultaneous and sensitive detection of PBZ and CAR with naked-eye detection limits of 10 and 5 μg kg−1, respectively. The limits of detection (LOD) for PBZ and CAR were 0.117 and 0.087 μg kg−1 in orange, 0.109 and 0.056 μg kg−1 in grape, and 0.131 and 0.094 μg kg−1 in cabbage mustard, respectively. The average recoveries of PBZ and CAR in orange, grape, and cabbage mustard were 97.86−102.83%, with coefficients of variation from 8.94 to 11.05. The detection results of this method for 30 samples (orange, grapes, and cabbage mustard) agreed well with those of liquid chromatography–tandem mass spectrometry. The novel dual-color ICA was sensitive, rapid, and accurate for the simultaneous detection of PBZ and CAR in real samples.
Collapse
|
10
|
Li R, Luo C, Qiu J, Li Y, Zhang H, Tan H. Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127818. [PMID: 34875416 DOI: 10.1016/j.jhazmat.2021.127818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/27/2023]
Abstract
Imazamox (IM) is a chiral pesticide that has been widely used in agriculture. Currently, few studies have investigated the toxicity mechanisms of imazamox to aquatic macrophyte from the enantiomer level. In this study, the enantioselective effects of IM on the toxicity and physiological and biochemical system of aquatic macrophyte Lemna minor were systematically investigated. Metabolomic and transcriptomic for Lemna minor were used to identify potential mechanisms of toxicity. 7 d EC50s for racemic-, R-, and S-IM were 0.036, 0.035, and 0.203 mg/L, respectively, showing enantioselective toxicity. In addition, IM caused Lemna minor lipid peroxidation and antioxidant damage, and inhibited the activities of the target enzymes. Metabolomic and transcriptomic data indicated that R-IM interferenced differentially expressed genes and metabolites of Lemna minor which were enriched in carbon fixation during photosynthesis, glutathione metabolic pathway, pentose phosphate pathway, zeatin biosynthesis, and porphyrin and chlorophyll metabolism. S-IM affected phenylalanine metabolism, phenylpropanoid biosynthesis, zeatin biosynthesis and secondary metabolite biosynthesis. Racemic-IM influenced carbon fixation during operation, glutathione metabolic pathway, zeatin biosynthesis and pentose phosphate pathway. The results provide new insights into the enantioselective toxicity mechanisms of IM to Lemna minor, and lay the foundation for conducting environmental risk assessments.
Collapse
Affiliation(s)
- Rui Li
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Chenxi Luo
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jingsi Qiu
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yuanfu Li
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Hui Zhang
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Huihua Tan
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
11
|
Ibiang SR, Sakamoto K. Modulation of Phytochemicals and Essential Trace Elements in Fruits of Different Tomato Cultivars by the Endophytic Fungus Penicillium pinophilum EU0013. Microbes Environ 2022; 37:ME22026. [PMID: 36104169 PMCID: PMC9530726 DOI: 10.1264/jsme2.me22026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
The present study investigated the effects of the endophytic fungus, Penicillium pinophilum EU0013 on fruit phytochemical indices and essential trace elements in five tomato cultivars. In a completely randomized design, inoculated and uninoculated seedlings of tomato cultivars (Momotaro, Rodeo, Anaya, Reika, and Cherry) were raised for sixteen weeks in a greenhouse. Fruit fresh weights and root colonization by P. pinophilum were significantly higher in the Rodeo cultivar than in the other cultivars tested. Significant effects of the cultivar, inoculation, and interaction on fruit dry weights were observed with higher values in Anaya inoculated with P. pinophilum. Cultivar and inoculation effects were significant for ascorbic acid and soluble sugars in four cultivars, with increases being observed due to the P. pinophilum inoculation. Lycopene levels increased in Rodeo and decreased in Anaya, while β-carotene levels increased in four cultivars due to the inoculation. Manganese concentrations were significantly increased in Cherry, while iron concentrations were increased in Reika and Cherry. Increases due to the inoculation were observed for gibberellic acids (GA1 and GA4) in Reika and Anaya, whereas decreases were detected in Cherry and Rodeo. Similar results were obtained for abscisic acids (ABA) with increases in Reika and Anaya due to the inoculation. P. pinophilum EU0013 demonstrated the ability to improve the nutritive value of tomato fruits via modulations to phytochemicals in addition to increases in Mn and Fe concentrations, particularly in Cherry and Rodeo. Cultivar responses to the P. pinophilum inoculation are a factor that need to be considered for its use in increasing fruit quality indices in tomato.
Collapse
Affiliation(s)
- Sarah Remi Ibiang
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271–8510 Japan
| | - Kazunori Sakamoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271–8510 Japan
| |
Collapse
|
12
|
Li D, Mo S, Batchelor WD, Cheng R, Wang H, Li R. Effects of nitrogen topdressing and paclobutrazol at different stages on spike differentiation and yield of winter wheat. PeerJ 2021; 9:e12473. [PMID: 34909272 PMCID: PMC8638589 DOI: 10.7717/peerj.12473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Optimal nitrogen (N) application and plant growth regulators can improve wheat productivity. This can help to improve yield level and ensure food security with limited resources in the Huang-Huai-Hai Plain of China (HPC). Methods A 2-year field experiment was conducted using a randomized block design with four treatments (TS-N topdressing at pseudostem erection stage ; TPS-N topdressing combined with paclobutrazol application at pseudostem erection stage; TJ-N topdressing at jointing stage; TPJ-N topdressing at combined with paclobutrazol application at jointing stage) in 2011-2013. Results The grain number per ear, thousand kernel weight and yield for the TJ and TPJ treatments were higher than those of the TS and TPS treatments. Grain number per ear, yield, and thousands kernel weigh for the TPJ treatment were significantly higher than for the TS and TPS in 2011-2012 (9.82% and 7.27%, 10.23% and 8.99%, 6.12% and 5.58%) and in 2012-2013 (10.21% and 11.55%, 8.00% and 6.58%, 0.00 and 0.00), respectively. Thousands kernel weight under TJ were significantly higher than those under TS and TPS by 13.21% and 14.03%, respectively in 2012-2013. The floret number, significantly correlated with cytokinin content, was also significantly increased under TJ and TPJ at connectivum differentiation stage. For TPJ treatment, the floret number was significantly higher than for the TS, TPS, and TJ by 19.92%, 10.21%, 6.10% in 2011-2012; it was higher than for the TS and TPS by 28.06% and 29.61% in 2012-2013, respectively. The relative expression level of cytokinin oxidase/dehydrogenase gene (TaCKX2.2) was improved during flowering, when cytokinin content was at high level and was also inhibited by paclobutrazol with different degrees. Conclusions Therefore, nitrogen topdressing at jointing stage had increased grain number per ear, thousand kernel weight, and grain yield of wheat. Paclobutrazol could delay spike differentiation and promote cytokinin accumulation that induced expression of TaCKX2.2, maintaining hormonal balance and affecting wheat spike morphogenesis.
Collapse
Affiliation(s)
- Dongxiao Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Shaojing Mo
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | | | - Ruiting Cheng
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hongguang Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Ruiqi Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
13
|
Zhao H, Li Q, Jin X, Li D, Zhu Z, Li QX. Chiral enantiomers of the plant growth regulator paclobutrazol selectively affect community structure and diversity of soil microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148942. [PMID: 34311352 DOI: 10.1016/j.scitotenv.2021.148942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Paclobutrazol is a triazole plant growth regulator with a wide range of applications in crop and fruit tree production. Paclobutrazol is used as a racemic mixture in agriculture. However, the effects of paclobutrazol enantiomers on soil microbial community structure and diversity are unclear. In the present study, Illumina high-throughput sequencing was used to study the enantioselective effects of two paclobutrazol enantiomers on soil microbial community. S-paclobutrazol was more persistent than R-paclobutrazol. The half-lives of the S- and R-isomers were 80 d and 50 d, respectively. No interconversion between the two isomers occurred in soils. In addition, the enantiomers had significant enantiomeric effects on soil microbial community and the paclobutrazol degradation was probably attributed to the presence of Pseudomonas and Mycobacterium. Notably, the relative abundance of Fusarium, a genus of filamentous fungi producing gibberellins, could be enantioselectively affected by the chiral enantiomers. Paclobutrazol enantiomers exhibited greater effects on the fungal community structure than bacterial community structure due to the fungicidal activity of paclobutrazol. Finally, R-paclobutrazol had a significant effect on the microbial networks. The findings of the present study suggest that the use of S-paclobutrazol may accomplish both plant growth regulation and the minimization of effects of paclobutrazol on soil microbial communities.
Collapse
Affiliation(s)
- Hongwei Zhao
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Environment and Ecology, Hainan University, Renmin Ave. 58, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Qiuli Li
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Environment and Ecology, Hainan University, Renmin Ave. 58, Haikou 570228, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xiaotuo Jin
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Environment and Ecology, Hainan University, Renmin Ave. 58, Haikou 570228, China
| | - Dong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|