1
|
Song H, Zhao K, Wang X, Jiang G, Li J, He C, Wang L, Sun S, Tu M, Wang Q, Gong R, Chen D. Multi-Omics Analysis Uncovers the Mechanism for Enhanced Organic Acid Accumulation in Peach ( Prunus persica L.) Fruit from High-Altitude Areas. PLANTS (BASEL, SWITZERLAND) 2024; 13:3171. [PMID: 39599380 PMCID: PMC11597949 DOI: 10.3390/plants13223171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The early-ripening peach industry has undergone rapid development in the Panxi region of the Sichuan Basin in recent years. However, after the introduction of some new peach varieties to the high-altitude peach-producing areas in Panxi, the titratable acid content in peach fruit has significantly increased. This study compared the fruit quality indicators of early-ripening peach varieties cultivated in Xide County (a high-altitude peach-producing area) and Longquanyi District (a low-altitude peach-producing area) in Sichuan Province and analyzed the differences in organic acid metabolism by combining primary metabolomic and transcriptomic approaches. The results showed that the 'Zhongtaohongyu' fruit from the high-altitude peach-producing area had a much higher accumulation of malic acid and, accordingly, a significantly higher organic acid content than the other samples. The lower annual average temperature and stronger ultraviolet radiation in high-altitude peach-producing areas may lead to the increased expression of genes (PpNAD-ME1, PpNADP-ME3, and PpPEPC1) in the organic acid synthesis pathway and the decreased expression of genes (PpACO2, PpNAD-MDH2/3/4/5, and PpPEPCK2) in the organic acid degradation pathway in peach fruit, ultimately resulting in the accumulation of more organic acids. Among them, the downregulation of the key genes PpNAD-MDH3/4/5 involved in malic acid metabolism may be the main reason for the higher malic acid accumulation in peach fruit from high-altitude peach-producing areas. Overall, this study elucidates the mechanism by which environmental factors enhance the accumulation of organic acids in peach fruit from high-altitude peach-producing areas from a multi-omics perspective, as well as providing a theoretical basis for screening key genes involved in organic acid metabolism in peach fruit.
Collapse
Affiliation(s)
- Haiyan Song
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Ke Zhao
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xiaoan Wang
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- College of Horticulture, Sichuan Agricultural University, Chengdu 6111130, China;
| | - Guoliang Jiang
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Jing Li
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Chengyong He
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Lingli Wang
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Shuxia Sun
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Meiyan Tu
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Qiang Wang
- Chengdu Agricultural Technology Extension Station, Chengdu 610095, China;
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu 6111130, China;
| | - Dong Chen
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| |
Collapse
|
2
|
Chen Y, Shan L, Zheng W, Chen J, Deng L, Tian X, Xie R, Yang Y, Zhang L, Yang B. Global lysine succinylation analysis unveils post-translational regulation effect on phenylpropanoid metabolism remodeling during Lonicera japonica flower development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108978. [PMID: 39084169 DOI: 10.1016/j.plaphy.2024.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Lonicera japonica plays a significant role in traditional Chinese medicine and as a food source, making it a focus of studies on protein succinylation and its potential role in regulating secondary metabolism during flower development. This study aimed to clarify the regulatory mechanism of protein succinylation on phenylpropanoid-related phenotypic changes by conducting a global lysine succinylation proteomic analysis across different flowering stages. A total of 586 lysine succinylated peptides in 303 proteins were identified during early and late floral stages. Functional enrichment analysis revealed that succinylated proteins primarily participated in the tricarboxylic acid (TCA) cycle, amino acid metabolism, and secondary metabolism. The abundance of succinylated aspartate transaminase (AT), 4-coumarate-CoA ligase (4CL), and phenylalanine N-hydroxylase (CYP79A2) in phenylpropanoid metabolism varied during flower development. In vitro experiments demonstrated that succinylation increased AT activity while inhibited 4CL activity. Decreased levels of total flavonoids and phenolic acids indicated significant alterations in phenylpropanoid metabolism during later floral stages. These results suggest that succinylation of TCA cycle proteins not only influences flower development but also, together with AT-4CL-CYP79A2 co-succinylation, redirects phenylpropanoid metabolism during flower development in L. japonica.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Luhuizi Shan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxi Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jie Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Xu Tian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruili Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunhong Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Chang X, Chang X, Li L, Cheng X, Wang Y. Transcriptomic responses of 'Huping jujube' (Zizyphus jujuba mill. cv. Huping) fruit to combined treatment of acidic electrolyzed water and high-voltage electrostatic field. Food Res Int 2024; 191:114742. [PMID: 39059929 DOI: 10.1016/j.foodres.2024.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
The molecular mechanism underlying the preserving superior quality attributes of postharvest Huping jujube fruit by combining acidic electrolyzed water and high-voltage electrostatic field (AH) treatment remained unclear. The high-throughput sequencing analysis revealed a total of 3590 common differentially expressed genes (DEGs) in the T-W-CK0 vs T-W-CK75 and T-W-CK75 vs T-W-AH75 groups. AH treatment down-regulated most genes associated with respiratory metabolism, as well as lignin and anthocyanin biosynthesis, thereby maintaining lower physiological activities, improving taste and color quality of mature-white jujube. Additionally, AH treatment downregulated the genes involved in reactive oxygen species (ROS) generation and disease resistance, while simultaneously upregulating the genes associated with ROS elimination. This suggested that AH treatment could inhibit pathogen infection to prevent the activation of plants' active defense and reduce the ROS-induced damage. In sum, the present study provided a comprehension explanation that AH treatment improved the storage quality attributes of jujube fruit at the genetic level.
Collapse
Affiliation(s)
- Xiaojie Chang
- College of Horticulture, Shanxi Agricultural University, Taigu 030800, China; Life Sciences Department, Shanxi Center of Technology Innovation for High Value Added echelon Utilization of Premium Agro-Products, Yuncheng University, Yuncheng 044000, China; Shanxi Center of Technology Innovation for Storage and Processing of Fruit and Vegetable, Taigu 030800, China.
| | - Xiaoyuan Chang
- Shenzhen Tobacco Industry Co., Ltd, Shenzhen 518000, China.
| | - Longzhen Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China; Shanxi Center of Technology Innovation for Storage and Processing of Fruit and Vegetable, Taigu 030800, China.
| | - Xueling Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China; Shanxi Center of Technology Innovation for Storage and Processing of Fruit and Vegetable, Taigu 030800, China.
| | - Yu Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030800, China; College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China; Shanxi Center of Technology Innovation for Storage and Processing of Fruit and Vegetable, Taigu 030800, China.
| |
Collapse
|
4
|
Niu M, Chen X, Zhou W, Guo Y, Yuan X, Cui J, Shen Z, Su N. Multi-omics analysis provides insights intro lysine accumulation in quinoa (Chenopodium quinoa Willd.) sprouts. Food Res Int 2023; 171:113026. [PMID: 37330848 DOI: 10.1016/j.foodres.2023.113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
Lysine, the first limiting essential amino acid, the deficiency of which seriously affects the health of human and animals. In this study, quinoa germination significantly increased the nutrients, especially lysine content. To better understanding the underlying molecular mechanism of lysine biosynthesis, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics, RNA-sequencing (RNA-Seq) technology and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) platform-based phytohormones analyses were conducted. Through proteome analyses, a total of 11,406 differentially expressed proteins were identified, which were mainly related to secondary metabolites. The lysine-rich storage globulins and endogenous phytohormones probably contributed the increased lysine content in quinoa during germination. Furthermore, aspartic acid semialdehyde dehydrogenase is essential for lysine synthesis in addition to aspartate kinase and dihydropyridine dicarboxylic acid synthase. Protein-protein interaction analysis indicated lysine biosynthesis is associated with "amino metabolism" and "starch and sucrose metabolism". Above all, our study screens the candidate genes participated in lysine accumulation and explores the factors affected lysine biosynthesis by multi-omics analysis. These information not only paves a foundation for breeding lysine-rich quinoa sprouts but also provides valuable multi-omics resource to explore the characteristic of nutrients during quinoa germination.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Youyou Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Song J, Campbell L, Vinqvist-Tymchuk M. Application of quantitative proteomics to investigate fruit ripening and eating quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153766. [PMID: 35921768 DOI: 10.1016/j.jplph.2022.153766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The consumption of fruit and vegetables play an important role in human nutrition, dietary diversity and health. Fruit and vegetable industries impart significant impact on our society, economy, and environment, contributing towards sustainable development in both developing and developed countries. The eating quality of fruit is determined by its appearance, color, firmness, flavor, nutritional components, and the absence of defects from physiological disorders. However, all of these components are affected by many pre- and postharvest factors that influence fruit ripening and senescence. Significant efforts have been made to maintain and improve fruit eating quality by expanding our knowledge of fruit ripening and senescence, as well as by controlling and reducing losses. Innovative approaches are required to gain better understanding of the management of eating quality. With completion of the genome sequence for many horticultural products in recent years and development of the proteomic research technique, quantitative proteomic research on fruit is changing rapidly and represents a complementary research platform to address how genetics and environment influence the quality attributes of various produce. Quantiative proteomic research on fruit is advancing from protein abundance and protein quantitation to gene-protein interactions and post-translational modifications of proteins that occur during fruit development, ripening and in response to environmental influences. All of these techniques help to provide a comprehensive understanding of eating quality. This review focuses on current developments in the field as well as limitations and challenges, both in broad term and with specific examples. These examples include our own research experience in applying quantitative proteomic techniques to identify and quantify the protein changes in association with fruit ripening, quality and development of disorders, as well as possible control mechanisms.
Collapse
Affiliation(s)
- Jun Song
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada.
| | - Leslie Campbell
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Melinda Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| |
Collapse
|
6
|
Effects of Fruit Storage Temperature and Time on Cloud Stability of Not from Concentrated Apple Juice. Foods 2022; 11:foods11172568. [PMID: 36076755 PMCID: PMC9455847 DOI: 10.3390/foods11172568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Apple juice that is designated ‘Not from concentrated’ (NFC) is now increasingly popular with consumers due to its unique taste and rich nutritional value. However, layered precipitation and instability have emerged as serious technical problems that restrict the viability of the NFC apple juice industry. This study researched the influence of water-cored ‘Fuji’ apple fruit storage under different temperatures (0, 20 °C) and times (0, 9, 18, 30, 60 days) on the turbidity stability of NFC apple juice. Changes in the physicochemical properties (juice yield, pH, total soluble solids and titratable acid), turbidity stability (turbidity and particle size) and precipitation sensitive substances (insoluble starch, total phenolics, soluble protein and pectin) of NFC apple juice were determined, combined with the respiratory rates and ethylene release of apples, in order to study post-harvest regulation and control of processed fruit. Results indicated that fruit storage temperature and time significantly guided the turbidity stability of NFC apple juice. As a typical respiratory climacteric fruit, apple fruit stored 45 days at 0 °C and 15 days at 20 °C gained the best juice stability, respectively. This is basically consistent with the respiratory peak of fruit when processing raw materials. During the post-ripening process, the insoluble starch in apple gradually hydrolyzed into fructose and glucose, while total phenolics diminished and water-soluble pectin content increased. On the other hand, the amounts of pectin, soluble protein and phenolics in fruit juice declined as the fruit aged in the late storage period (stored 75 days at 0 °C and 40 days at 20 °C). Meanwhile particle size became larger and the turbidity stability of cloudy juices also decreased. This study’s results will provide a sound theoretical basis for improving the turbidity stability of NFC apple juice by regulating the physiological state of processed raw materials.
Collapse
|
7
|
Zhang R, Jia W, Shi L. A Comprehensive Review on the Development of Foodomics-Based Approaches to Evaluate the Quality Degradation of Different Food Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2077362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| |
Collapse
|
8
|
Yu F, Chen C, Chen S, Wang K, Huang H, Wu Y, He P, Tu Y, Li B. Dynamic changes and mechanisms of organic acids during black tea manufacturing process. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
BrLETM2 Protein Modulates Anthocyanin Accumulation by Promoting ROS Production in Turnip ( Brassica rapa subsp. rapa). Int J Mol Sci 2021; 22:ijms22073538. [PMID: 33805479 PMCID: PMC8036442 DOI: 10.3390/ijms22073538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
In ‘Tsuda’ turnip, the swollen root peel accumulates anthocyanin pigments in a light-dependent manner, but the mechanism is unclear. Here, mutant g120w which accumulated extremely low levels of anthocyanin after light exposure was identified. Segregation analysis showed that the anthocyanin-deficient phenotype was controlled by a single recessive gene. By using bulked-segregant analysis sequencing and CAPS marker-based genetic mapping analyses, a 21.6-kb region on chromosome A07 was mapped, in which a calcium-binding EF hand family protein named BrLETM2 was identified as the causal gene. RNA sequencing analysis showed that differentially expressed genes (DEGs) between wild type and g120w in light-exposed swollen root peels were enriched in anthocyanin biosynthetic process and reactive oxygen species (ROS) biosynthetic process GO term. Furthermore, nitroblue tetrazolium (NBT) staining showed that the ROS level decreased in g120w mutant. Anthocyanins induced by UV-A were abolished by the pre-treatment of seedlings with DPI (an inhibitor of nicotinamide adenine nucleoside phosphorylase (NADPH) oxidase) and decreased in g120w mutant. These results indicate that BrLETM2 modulates ROS signaling to promote anthocyanin accumulation in turnip under UV-A and provides new insight into the mechanism of how ROS and light regulate anthocyanin production.
Collapse
|